Advertisement

Science Bulletin

, Volume 60, Issue 1, pp 109–115 | Cite as

Nanobowl optical concentrator for efficient light trapping and high-performance organic photovoltaics

  • Yongcai Qiu
  • Siu-Fung Leung
  • Qianpeng Zhang
  • Cheng Mu
  • Bo Hua
  • He Yan
  • Shihe YangEmail author
  • Zhiyong FanEmail author
Article Engineering Sciences

Abstract

Geometrical light trapping is a simple and promising strategy to largely improve the optical absorption and efficiency of solar cell. Nonetheless, implementation of geometrical light trapping in organic photovoltaic is challenging due to the fact that uniform organic active layer can rarely be achieved on textured substrate. In this work, squarely ordered nanobowl array (SONA) is reported for the first time and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM):poly(3-hexylthiophene) (P3HT)-based organic photovoltaic (OPV) device on SONA demonstrated over 28 % enhancement in power conversion efficiency over the planar counterpart. Interestingly, finite-difference time-domain (FDTD) optical simulation revealed that the superior light trapping by SONA originated from optical concentrator effect by nanobowl. Furthermore, aiming at low-cost, solution processible, and resource sustainable flexible solar cells, we employed Ag nanowires for the top transparent conducting electrode. This work not only revealed the in-depth understanding of light trapping by nanobowl optical concentrator, but also demonstrated the feasibility of implementing geometrical light trapping in OPV.

Keywords

Nanobowl Optical concentrator Anodic aluminum oxide Flexible photovoltaic Organic solar cells 

摘要

几何陷光是一种简单且极具希望成为大幅度提高太阳能电池的光吸收和效率的方案. 然而, 由于很难在粗糙的衬底上均匀涂敷有机吸光层, 在有机光伏电池中实现几何陷光非常具有挑战性. 本文报道了一种基于方形排序的纳米碗阵列(SONA)的PCBM:P3HT有机光伏电池。这种电池比相应的基于平面阵列的电池在光电能量转换效率方面提高了28 %以上. 时域有限差分法(FDTD)光学模拟显示, SONA优越的陷光性能源自于纳米碗阵列的聚光效应. 此外, 为了实现低成本、可湿法加工、资源可持续性的柔性太阳能电池, 本文采用了银纳米线作为顶部透明电极. 本研究不仅深入展示了基于纳米碗聚光器的高效陷光效应, 还解释了在有机光伏电池中实现几何陷光的可行性.

Notes

Acknowledgments

This work was supported by the HK-RGC General Research Funds (HKUST 605710, 604809, 612111, 612113), and partially supported by ITS/117/13 from Hong Kong Innovation Technology Commission.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11434_2014_693_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1319 kb)

References

  1. 1.
    Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci USA 103:15729–15735CrossRefGoogle Scholar
  2. 2.
    Kamat PV, Tvrdy K, Baker DR et al (2010) Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. Chem Rev 110:6664–6688CrossRefGoogle Scholar
  3. 3.
    Shah A, Torres P, Tscharner R et al (1999) Photovoltaic technology: the case for thin-film solar cells. Science 285:692–698CrossRefGoogle Scholar
  4. 4.
    Yeh LK, Lai KY, Lin GJ et al (2011) Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays. Adv Energy Mater 1:506–510CrossRefGoogle Scholar
  5. 5.
    Wei W, Tsai M, Ho S et al (2013) Above-11 %-efficiency organic–inorganic hybrid solar cells with omnidirectional harvesting characteristics by employing hierarchical photon trapping structures. Nano Lett 13:3658–3663CrossRefGoogle Scholar
  6. 6.
    Leung S, Zhang Q, Xiu F et al (2014) Light management with nanostructures for optoelectronic devices. J Phys Chem Lett 5:1479–1495CrossRefGoogle Scholar
  7. 7.
    Li G, Shrotriya V, Huang JS et al (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864–868CrossRefGoogle Scholar
  8. 8.
    Ameri T, Li N, Brabec CJ (2013) Highly efficient organic tandem solar cells: a follow up review. Energy Environ Sci 6:2390–2413CrossRefGoogle Scholar
  9. 9.
    Angmo D, Larsen-Olsen TT, Jorgensen M et al (2013) Roll-to-roll inkjet printing and photonic sintering of electrodes for ITO free polymer solar cell modules and facile product integration. Adv Energy Mater 3:172–175CrossRefGoogle Scholar
  10. 10.
    Verreet B, Rand BP, Cheyns D et al (2011) A 4 % efficient organic solar cell using a fluorinated fused subphthalocyanine dimer as an electron acceptor. Adv Energy Mater 1:565–568CrossRefGoogle Scholar
  11. 11.
    You J, Li X, Xie F et al (2012) Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode. Adv Energy Mater 2:1203–1207CrossRefGoogle Scholar
  12. 12.
    Ameri T, Dennler G, Lungenschmied C et al (2009) Organic tandem solar cells: a review. Energy Environ Sci 2:347–363CrossRefGoogle Scholar
  13. 13.
    Chen H, Hou J, Zhang S et al (2009) Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photonics 3:649–653CrossRefGoogle Scholar
  14. 14.
    Günes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107:1324–1338CrossRefGoogle Scholar
  15. 15.
    Cheng Y, Yang S, Hsu C (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109:5868–5923CrossRefGoogle Scholar
  16. 16.
    Han M, Kim H, Seo H et al (2012) Photovoltaic efficiency enhancement by the generation of an embedded silica-like passivation layer along the P3HT/PCBM interface using an asymmetric block-copolymer additive. Adv Mater 24:6311–6317CrossRefGoogle Scholar
  17. 17.
    Shelton SW, Chen TL, Barclay DE et al (2012) Solution-processable triindoles as hole selective materials in organic solar cells. ACS Appl Mater Interfaces 4:2534–2540CrossRefGoogle Scholar
  18. 18.
    Kim BJ, Miyamoto Y, Ma B et al (2009) Photocrosslinkable polythiophenes for efficient, thermally stable, organic photovoltaics. Adv Funct Mater 19:2273–2281CrossRefGoogle Scholar
  19. 19.
    Lan J, Cherng S, Yang Y et al (2014) The effects of Ta2O5–ZnO films as cathodic buffer layers in inverted polymer solar cells. J Mater Chem A 2:9361–9370CrossRefGoogle Scholar
  20. 20.
    Lan J, Liang Z, Yang Y et al (2014) The effect of SrTiO3: ZnO as cathodic buffer layer for inverted polymer solar cells. Nano Energy 4:140–149CrossRefGoogle Scholar
  21. 21.
    Yao Y, Hou J, Xu Z et al (2008) Effects of solvent mixtures on the nanoscale phase separation in polymer solar cells. Adv Funct Mater 18:1783–1789CrossRefGoogle Scholar
  22. 22.
    Shrotriya V, Wu EH, Li G et al (2006) Efficient light harvesting in multiple-device stacked structure for polymer solar cells. Appl Phys Lett 88:064104CrossRefGoogle Scholar
  23. 23.
    Tan Z, Li L, Li C et al (2014) Trapping light with a nanostructured CeOx/Al Back electrode for high-performance polymer solar cells. Adv Mater Interfaces 1:1400197CrossRefGoogle Scholar
  24. 24.
    Tan Z, Li L, Wang F et al (2014) Solution-processed rhenium oxide: a versatile anode buffer layer for high performance polymer solar cells with enhanced light harvest. Adv Energy Mater 4:1–7Google Scholar
  25. 25.
    Kumar V, Wang H (2013) Selection of metal substrates for completely solution-processed inverted organic photovoltaic devices. Sol Energy Mat Sol Cells 113:179–185CrossRefGoogle Scholar
  26. 26.
    Chauhan RN, Singh C, Anand R et al (2012) Effect of sheet resistance and morphology of ITO thin films on polymer solar cell characteristics. Int J Photoenergy 2012:879261CrossRefGoogle Scholar
  27. 27.
    Lee MH, Lim N, Ruebusch DJ et al (2011) Roll-to-roll anodization and etching of aluminum foils for high-throughput surface nano-texturing. Nano Lett 11:3425CrossRefGoogle Scholar
  28. 28.
    Søndergaard RR, Hösel M, Krebs FC (2013) Roll-to-Roll fabrication of large area functional organic materials. J Polym Sci Part B: Polym Phys 51:16–34CrossRefGoogle Scholar
  29. 29.
    Leung S, Gu L, Zhang Q et al (2014) Roll-to-roll fabrication of large scale and regular arrays of three-dimensional nanospikes for high efficiency and flexible photovoltaics. Sci Rep 4:4243CrossRefGoogle Scholar
  30. 30.
    Leung SF, Yu M, Lin Q et al (2012) Efficient photon capturing with ordered three-dimensional nanowell arrays. Nano Lett 12:3682–3689CrossRefGoogle Scholar
  31. 31.
    Lin Q, Hua B, Leung S et al (2013) Efficient light absorption with integrated nanopillar/nanowell arrays for three-dimensional thin-film photovoltaic applications. ACS Nano 7:2725–2732CrossRefGoogle Scholar
  32. 32.
    Lin Q, Leung S, Tsui K et al (2013) Programmable nanoengineering templates for fabrication of three-dimensional nanophotonic structures. Nanoscale Res Lett 8:268CrossRefGoogle Scholar
  33. 33.
    Yu R, Ching K, Lin Q et al (2011) Strong light absorption of self-organized 3-D nanospike arrays for photovoltaic applications. ACS Nano 5:9291–9298CrossRefGoogle Scholar
  34. 34.
    Tsui KH, Lin Q, Chou H et al (2014) Low-cost, flexible and self-cleaning three-dimensional anti-reflection nanocone arrays for high efficiency photovoltaics. Adv Mater 26:2805–2811CrossRefGoogle Scholar
  35. 35.
    Lin Q, Leung S, Lu L et al (2014) Inverted nanocone-based thin film photovoltaics with omnidirectionally enhanced performance. ACS Nano 8:6484–6490CrossRefGoogle Scholar
  36. 36.
    Guo R, Huang H, Chang P et al (2014) Coupled optical and electrical modeling of thin-film amorphous silicon solar cells based on nanodent plasmonic substrates. Energy Environ Sci 8:141–149Google Scholar
  37. 37.
    Huang H, Lu L, Wang J et al (2013) Performance enhancement of thin-film amorphous silicon solar cells with low cost nanodent plasmonic substrates. Energy Environ Sci 6:2965–2971CrossRefGoogle Scholar
  38. 38.
    Qiu Y, Leung S, Zhang Q et al (2014) Efficient photoelectrochemical water splitting with ultra-thin film of hematite on three-dimensional nanophotonic structures. Nano Lett 14:2123–2139CrossRefGoogle Scholar
  39. 39.
    Li J, Qiu Y, Wei Z et al (2014) Three-dimensional hexagonal fluorine-doped tin oxide nanocone arrays: a superior light harvesting electrode for high performance photoelectrochemical water splitting. Energy Environ Sci 7:3651–3658CrossRefGoogle Scholar
  40. 40.
    Wei H, Huang J, Hsu C et al (2013) Organic solar cells featuring nanobowl structures. Energy Environ Sci 6:1192–1198CrossRefGoogle Scholar
  41. 41.
    Hu L, Kim HS, Lee J et al (2010) Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4:2955–2963CrossRefGoogle Scholar
  42. 42.
    Chen Y, Li Z, Chen X et al (2012) Improved performance of flexible amorphous silicon solar cells with silver nanowires. J Appl Phys 112:124320CrossRefGoogle Scholar
  43. 43.
    Sun Y, Xia Y (2002) Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv Mater 14:833–837CrossRefGoogle Scholar
  44. 44.
    Dewan R, Marinkovic M, Noriega R et al (2009) Light trapping in thin-film silicon solar cells with submicron surface texture. Opt Express 17:23058–23065CrossRefGoogle Scholar
  45. 45.
    Lin G, Wang H, Lien D et al (2014) A broadband and omnidirectional light-harvesting scheme employing nanospheres on Si solar cells. Nano Energy 6:36–43CrossRefGoogle Scholar
  46. 46.
    Fan ZY, Razavi H, Do JW et al (2009) Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrate. Nat Mater 8:648–653CrossRefGoogle Scholar
  47. 47.
    Leung S, Tsui K, Lin Q et al (2014) Large scale, flexible and three-dimensional quasi-ordered aluminum nanospikes for thin film photovoltaics with omnidirectional light trapping and optimized electrical design. Energy Environ Sci 7:3611–3616CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yongcai Qiu
    • 1
    • 2
  • Siu-Fung Leung
    • 2
  • Qianpeng Zhang
    • 2
  • Cheng Mu
    • 1
  • Bo Hua
    • 2
  • He Yan
    • 1
  • Shihe Yang
    • 1
    Email author
  • Zhiyong Fan
    • 2
    Email author
  1. 1.Department of ChemistryThe Hong Kong University of Science and TechnologyHong KongChina
  2. 2.Department of Electronic and Computer EngineeringThe Hong Kong University of Science and TechnologyHong KongChina

Personalised recommendations