Skip to main content

Mitigating greenhouse gas emissions through replacement of chemical fertilizer with organic manure in a temperate farmland


Burning crop residues and excessive use of chemical fertilizers results in an enormous waste of biological resources, which further weakens the potential capacity of the agro-ecosystem as a carbon sink. To explore the potential of farmlands acting as a carbon sink without yield losses, we conducted an experiment on a temperate eco-farm in eastern rural China. Crop residues were applied to cattle feed, and the composted cattle manure was returned to cropland with a winter wheat and maize rotation. Four different proportions of fertilizers were designed: 100 % cattle manure, 100 % mineral nitrogen, 75 % cattle manure plus 25 % mineral nitrogen, and 50 % cattle manure plus 50 % mineral nitrogen. Crop yield and greenhouse gas (GHG) emissions were carefully calculated according to the Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories 2006. Our results showed that replacing chemical fertilizer with organic manure significantly decreased the emission of GHGs. Yields of wheat and corn also increased as the soil fertility was improved by the application of cattle manure. Totally replacing chemical fertilizer with organic manure decreased GHG emissions, which reversed the agriculture ecosystem from a carbon source (+2.7 t CO2-eq. hm−2 year−1) to a carbon sink (−8.8 t CO2-eq. hm−2 year−1). Our findings provide useful insights for improving agricultural ecosystems under global change scenarios.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    FAO (2011) Organic farming and climate change mitigation. A report of the Round Table on Organic Agriculture and Climate Change. Rome, Italy

  2. 2.

    Smith P, Martino D, Cai Z et al (2007) Agriculture. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  3. 3.

    Niggli U, Fließbach A, Hepperly P et al (2009) Low greenhouse gas agriculture: mitigation and adaptation potential of sustainable farming systems. Ökologie Landbau 141:32–33

    Google Scholar 

  4. 4.

    Griggs DJ, Noguer M (2002) Climate change 2001: the scientific basis. Contribution of working group i to the third assessment report of the intergovernmental panel on climate change. Weather 57:267–269

  5. 5.

    Paustian K, Babcock B, Hatfield J et al (2004) Agricultural mitigation of greenhouse gases: science and policy options. CAST (Council on Agricultural Science and Technology) Report R 141: 2004

  6. 6.

    Liu H, Jiang G, Zhuang H et al (2008) Distribution, utilization structure and potential of biomass resources in rural China: With special references of crop residues. Renew Sust Energ Rev 12:1402–1418

    Article  Google Scholar 

  7. 7.

    Limmeechokchai B, Chawana S (2007) Sustainable energy development strategies in the rural Thailand: The case of the improved cooking stove and the small biogas digester. Renew Sustain Energy Rev 11:818–837

    Article  Google Scholar 

  8. 8.

    Zeng X, Ma Y, Ma L (2007) Utilization of straw in biomass energy in China. Renew Sustain Energy Rev 11:976–987

    Article  Google Scholar 

  9. 9.

    Zheng Y, Li Z, Feng S et al (2010) Biomass energy utilization in rural areas may contribute to alleviating energy crisis and global warming: a case study in a typical agro-village of Shandong, China. Renew Sustain Energy Rev 14:3132–3139

    Article  Google Scholar 

  10. 10.

    Edmeades DC (2003) The long-term effects of manures and fertilizers on soil productivity and quality: a review. Nutr Cycl Agroecosyst 66:165–180

    Article  Google Scholar 

  11. 11.

    Blanco-Canqui H, Lal R (2007) Soil structure and organic carbon relationships following 10 years of wheat straw management in no-till. Soil Tillage Res 95:240–254

    Article  Google Scholar 

  12. 12.

    Schofield R, Taylor AW (1955) The measurement of soil pH. Soil Sci Soc Am J 19:164–167

    Article  Google Scholar 

  13. 13.

    Bremner JM, Mulvaney CS (1982) Nitrogen-total. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2: chemical and microbial properties, Agronomy Monograph 9. Agronomy Society of America, Madison, pp 595–624

  14. 14.

    Culley JLB (1993) Density and compressibility. In: Carter MR (ed) Soil sampling and methods of analysis. CRC Press, Boca Raton, pp 529–539

    Google Scholar 

  15. 15.

    Change IPOC, Eggelstons S, Buendia L et al (2006) IPCC guidelines for national greenhouse gas inventories. Institute for Global Environmental Strategies (IGES), Hayama, Japan

  16. 16.

    Sommer SG, Olesen JE, Petersen SO et al (2009) Region-specific assessment of greenhouse gas mitigation with different manure management strategies in four agroecological zones. Global Change Biol 15:2825–2837

    Article  Google Scholar 

  17. 17.

    Bhattacharya S, Abdul Salam P, Runqing H et al (2005) An assessment of the potential for non-plantation biomass resources in selected Asian countries for 2010. Biomass Bioenergy 29:153–166

    Article  Google Scholar 

  18. 18.

    Seufert V, Ramankutty N, Foley JA (2012) Comparing the yields of organic and conventional agriculture. Nature 485:229–232

    Article  Google Scholar 

  19. 19.

    Leifeld J, Angers DA, Chenu C et al (2013) Organic farming gives no climate change benefit through soil carbon sequestration. Proc Natl Acad Sci USA 110:E984

    Article  Google Scholar 

  20. 20.

    Gattinger A, Muller A, Haeni M et al (2013) Reply to Leifeld et al.: Enhanced top soil carbon stocks under organic farming is not equated with climate change mitigation. Proc Natl Acad Sci USA 110:E985

    Article  Google Scholar 

  21. 21.

    MacKenzie SH, Field CB, Raupach MR (2004) The global carbon cycle: integrating humans, climate, and the natural world. Island Press, Washington

    Google Scholar 

  22. 22.

    Hocking MB (2006) Handbook of chemical technology and pollution control. Academic Press, London

    Google Scholar 

  23. 23.

    Alvarez R (2005) A review of nitrogen fertilizer and conservation tillage effects on soil organic carbon storage. Soil Use Manag 21:38–52

    Article  Google Scholar 

  24. 24.

    Schlesinger WH (1999) Carbon sequestration in soils. Science 284:2095

    Article  Google Scholar 

  25. 25.

    Robertson GP (2004) Abatement of nitrous oxide, methane, and the other non-CO2 greenhouse gases: the need for a systems approach. In: Field CB, Raupach MR (eds) The global carbon cycle: integrating humans, climate and the natural world. Island Press, Washington, DC, USA, pp 493–506

  26. 26.

    Gregorich E, Rochette P, VandenBygaart A et al (2005) Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada. Soil Tillage Res 83:53–72

    Article  Google Scholar 

  27. 27.

    Steinfeld H, Gerber P, Wassenaar T et al (2006) Livestock’s long shadow: environmental issues and options. FAO, Rome, pp 101–104

  28. 28.

    Bemis G, Allen J (2005) Inventory of California greenhouse gas emissions and sinks: 1990 to 2002 update. In: California Energy Commission (ed) Proceedings of the Climate Change Advisory Committee Meeting and IEPR Committee Workshop on Global Climate Change in California

  29. 29.

    Cederberg C, Henriksson M, Berglund M (2013) An LCA researcher’s wish list—data and emission models needed to improve LCA studies of animal production. Animal 7:212–219

    Article  Google Scholar 

Download references


This work was jointly supported by the Key Strategic Project of the Chinese Academy of Sciences (KSZD-EW-Z-012-2) and the National Science and Technology Support Program (2012BAD14B00). We acknowledge Dr. Caihong Li and Dr. Yong Li of Institute of Botany, Chinese Academy of Sciences for their advices and help in the statistical analysis. Special thanks go to the staff of the Eco-farm Research Station of Shandong Agricultural University for providing living facilities during the experimental run.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information



Corresponding author

Correspondence to Gaoming Jiang.

Additional information

SPECIAL TOPIC: Land-ocean integrated research and development of carbon sink

Haitao Liu, Jing Li, and Xiao Li contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 56 kb)

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Li, J., Li, X. et al. Mitigating greenhouse gas emissions through replacement of chemical fertilizer with organic manure in a temperate farmland. Sci. Bull. 60, 598–606 (2015).

Download citation


  • Crop residue
  • Chemical fertilizer
  • Cattle manure
  • Crop yield
  • Greenhouse gas emissions
  • Climate change