Skip to main content

Revised Ti-in-biotite geothermometer for ilmenite- or rutile-bearing crustal metapelites

Abstract

In the present study, the Ti-in-biotite geothermometer was revised using more than 300 natural rutile- or ilmenite-bearing metapelites collected worldwide. The formulation was empirically calibrated as \( \ln [T\,(^\circ {\text{C}})] = 6.313 + 0.224\ln (X_{\text{Ti}} ) - 0.288\ln (X_{\text{Fe}} ) - 0.449\ln (X_{\text{Mg}} ) + 0.15P\,({\text{GPa}}) \), with \( X_{j} = {{j}}/({\text{Fe}} + {\text{Mg}} + {\text{Al}}^{\text{VI}} + {\text{Ti}}) \) in biotite, assuming ferric iron content of 11.6 mol% of the total iron in biotite. This thermometer is consistent with the well-calibrated garnet–biotite thermometer within error of ±50 °C for most of the calibrant samples and can successfully distinguish systematic temperature changes of different metamorphic zones in both prograde and inverted metamorphic terranes as well as thermal contact aureoles. Thus, the thermometer truthfully reflects real geologic conditions and can be applied to TiO2-saturated metapelites metamorphosed at the crustal level within the calibration ranges (450–840 °C, 0.1–1.9 GPa, X Ti = 0.02–0.14 in biotite).

摘要

本文根据取自世界各地的含有钛铁矿或金红石的变质泥质岩石的温度、压力和矿物成分数据,将黑云母Ti温度计修正为: \( \ln [T(^\circ {\text{C}})] = 6.313 + 0.224\ln (X_{\text{Ti}} ) - 0.288\ln (X_{\text{Fe}} ) - 0.449\ln (X_{\text{Mg}} ) + 0.15P({\text{GPa}}) \), 其中黑云母中八次配位的各种阳离子摩尔浓度定义为 \( X_{j} = {\text{j}}/({\text{Fe}} + {\text{Mg}} + {\text{Al}}^{\text{VI}} + {\text{Ti}}) \)。设定此类岩石中的黑云母含有11.6 mol%的三价铁。该温度计在±50 °C误差范围内与石榴子石-黑云母温度计基本一致,能准确识别递增变质带、倒转变质带、热接触变质晕圈内不同变质地带岩石变质温度的规律性变化,能反映客观地质事实。该温度计偶然误差一般不超过±65 °C,适用于钛饱和的变质泥质岩石。适用条件为:450~840 °C, 0.1~1.9 GPa, 黑云母中X Ti = 0.02~0.14。

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Holdaway MJ (2000) Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. Am Mineral 85:881–892

  2. Holdaway MJ (2001) Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet-biotite geothermometer. Am Mineral 86:1117–1129

  3. Wu CM, Zhang J, Ren LD (2004) Empirical garnet-biotite-plagioclase-quartz (GBPQ) geobarometry in medium-to high-grade metapelites. J Petrol 45:1907–1921

  4. Wu CM, Zhao GC (2006) Recalibration of the garnet-muscovite (GM) geothermometer and the garnet-muscovite-plagioclase-quartz (GMPQ) geobarometer for metapelitic assemblages. J Petrol 47:2357–2368

  5. Wu CM, Zhao GC (2007) The metapelitic garnet-biotite-muscovite-aluminosilicate-quartz (GBMAQ) geobarometer. Lithos 97:365–372

  6. Gerya TV, Perchuk LL, Triboulet C et al (1997) Petrology of the Tumanshet zonal metamorphic complex, eastern Sayan. Petrol 5:503–533

  7. Zenk M, Schulz B (2004) Zoned Ca-amphiboles and related P-T evolution in metabasites from the classical Barrovian metamorphic zones in Scotland. Mineral Mag 68:769–786

  8. Massonne H-J, Schreyer W (1987) Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. Contrib Mineral Petrol 96:212–224

  9. Massonne H-J, Schreyer W (1989) Stability field of the high-pressure assemblage talc + phengite and two new phengite barometers. Eur J Mineral 1:391–410

  10. Henry DJ, Guidotti CV (2002) Titanium in biotite from metapelitic rocks: temperature effects, crystal-chemical controls, and petrologic applications. Am Mineral 87:375–382

  11. Henry DJ, Guidotti CV, Thomson JA (2005) The Ti-saturation surface for low-to-medium pressure metapelitic biotites: implications for geothermometry and Ti-substitution mechanisms. Am Mineral 90:316–328

  12. Wu CM, Cheng BH (2006) Valid garnet-biotite (GB) geothermometry and garnet-aluminum silicate-plagioclase-quartz (GASP) geobarometry in metapelitic rocks. Lithos 89:1–23

  13. Huang MH, Buick IS, Hou LW (2003) Tectonometamorphic evolution of the eastern Tibet Plateau: evidence from the central Songpan-Garzê orogenic belt, western China. J Petrol 44:255–278

  14. Weller OM, St-Onge MR, Waters DJ et al (2013) Quantifying Barrovian metamorphism in the Danba structural culmination of eastern Tibet. J Meta Geol 31:909–935

  15. Ríos C, García C, Takasu A (2003) Tectono-metamorphic evolution of the Silgará formation metamorphic rocks in the southwestern Santander Massif, Colombian Andes. J S Am Earth Sci 16:133–154

  16. Ferry JM (1981) Petrology of graphitic sulfide-rich schists from south-central Maine: an example of desulfidation during prograde regional metamorphism. Am Mineral 66:908–930

  17. Himmelberg GR, Brew DA, Ford AB (1991) Development of inverted metamorphic isograds in the western metamorphic belt, Juneau, Alaska. J Meta Geol 9:165–180

  18. Mezger JE, Chacko T, Erdmer P (2001) Metamorphism at a late mesozoic accretionary margin: a study from the Coastal Belt of the North American Cordillera. J Meta Geol 19:121–137

  19. Novak JM, Holdaway MJ (1981) Metamorphic petrology, mineral equilibria, and polymetamorphism in the Augusta quadrangle, south-central Maine. Am Mineral 66:51–69

  20. Holdaway MJ, Dutrow BL, Hinton RW (1988) Devonian and Carboniferous metamorphism in west-central maine: the muscovite-almandine geobarometer and the staurolite problem revisited. Am Mineral 73:20–47

  21. Spear FS, Kohn MJ, Cheney JT (1999) P-T paths from anatectic pelites. Contrib Mineral Petrol 134:17–32

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (41225007).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Ming Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 108 kb)

Supplementary material 2 (XLS 45 kb)

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, CM., Chen, HX. Revised Ti-in-biotite geothermometer for ilmenite- or rutile-bearing crustal metapelites. Sci. Bull. 60, 116–121 (2015). https://doi.org/10.1007/s11434-014-0674-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0674-y

Keywords

  • Ti content
  • Biotite
  • Calibration
  • Geothermometer
  • Application
  • Error