Skip to main content
Log in

Kite code-based incremental redundancy hybrid ARQ scheme for fast-fading channels

  • Article
  • Communication
  • Published:
Chinese Science Bulletin

Abstract

Incremental redundancy hybrid automatic repeat request (IR HARQ) has been extensively studied for reliable data transmission over slow-fading or quasi-static channels. With the increase in movement speed of users and the use of long code words for data transmission, IR HARQ strategy in fast-fading channels is starting to attract attention in the academia. This paper studies the performance of the IR HARQ strategy based on Kite codes (a class of rateless codes) in the finite regime over fast-fading channels where a number of channel realizations are experienced in each retransmission round. We propose an algorithm that exploits current decoding reliability to determine the size of subsequent retransmissions. Long-term throughput and delay constraint throughput are analyzed and compared. Furthermore, in HARQ systems available, most of the computation power is consumed on failed decoding if a code word is retransmitted many times, which is not energy-efficient. Therefore, to improve the energy efficiency, we propose two efficient algorithms (early stopping algorithm and freezing node algorithm) for incremental decoding, which reduce the computational complexity of the most time-consuming steps in decoding procedure. Simulation results show that the substantial complexity reduction is achieved in terms of the total required number of decoding iterations and the required node operation complexity compared to conventional incremental decoding scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Makki B, Eriksson T (2012) On the average rate of HARQ-based quasi-static spectrum sharing networks. IEEE Trans Inform Theory 11:65–77

    Google Scholar 

  2. Shen C, Liu T, Fitz MP (2009) On the average rate performance of hybrid-ARQ in quasi-static fading channels. IEEE Trans Commun 57:3339–3352

    Article  Google Scholar 

  3. Tuninetti D (2011) On the benefits of partial channel state information for repetition protocols in block fading channels. IEEE Trans Inform Theory 57:5036–5053

    Article  Google Scholar 

  4. Ha J, Kim J, McLaughlin SW (2004) Rate-compatible puncturing of low-density parity-check codes. IEEE Trans Inform Theory 50:2824–2836

    Article  Google Scholar 

  5. Yazdani M, Banihashemi A (2004) On construction of rate-compatible low-density parity-check codes. In: Proceedings of IEEE international conference on communications, vol 1. pp 430–434

  6. Hsu CH, Anastasopoulos A (2008) Capacity achieving LDPC codes through puncturing. IEEE Trans Inform Theory 54:4698–4706

    Article  Google Scholar 

  7. El-Khamy M, Hou J, Bhushan N (2009) Design of rate-compatible structured LDPC codes for hybrid ARQ applications. IEEE J Sel Area Commun 27:965–973

    Article  Google Scholar 

  8. Kim J, Ramamoorthy A, Mclaughlin S (2009) The design of efficiently-encodable rate-compatible LDPC codes. IEEE Trans Commun 57:365–375

    Article  Google Scholar 

  9. Vellambi BN, Fekri F (2009) Finite-length rate-compatible LDPC codes: a novel puncturing scheme. IEEE Trans Commun 57:297–301

    Article  Google Scholar 

  10. Dammer U, Naroska E, Schmermbeck S et al (2004) A data puncturing IR-scheme for type-II hybrid ARQ protocols using LDPC codes. IEEE Global Telecommun Conf 5:3012–3016

    Google Scholar 

  11. Sesia S, Caire G, Vivier G (2004) Incremental redundancy hybrid ARQ schemes based on low-density parity-check codes. IEEE Trans Commun 52:1311–1321

    Article  Google Scholar 

  12. Hagenauer J (1988) Rate-compatible punctured convolutional codes (RCPC codes) and their applications. IEEE Trans Commun 36:389–400

    Article  Google Scholar 

  13. Kallel S (1995) Complementary punctured convolutional (CPC) codes and their applications. IEEE Trans Commun 43:2005–2009

    Article  Google Scholar 

  14. Arslan SS (2014) Incremental redundancy, fountain codes and advanced topics. arXiv:1402.6016

  15. Soljanin E, Varnica N, Whiting P (2005) Incremental redundancy hybrid ARQ with LDPC and raptor codes. IEEE Trans Inform Theory. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.318.4436&rep=rep1&type=pdf

  16. Heo J, Kim S, Kim J et al (2008) Low complexity decoding for Raptor codes for hybrid-ARQ systems. IEEE Trans Consum Electron 54:390–395

    Article  Google Scholar 

  17. Luby M (2002) LT codes. In: Proceedings of the 43rd symposium on foundations of computer science. Vancouver, BC, pp 271–280

    Google Scholar 

  18. Shokrollahi A (2006) Raptor codes. IEEE Trans Inform Theory 52:2551–2567

    Article  Google Scholar 

  19. Palanki R, Yedidia JS (2004) Rateless codes on noisy channels. In: Proceedings of international symposium on information theory (ISIT). Chicago, IL, p 37

  20. Etesami O, Shokrollahi A (2006) Raptor codes on binary memoryless symmetric channels. IEEE Trans Inform Theory 52:2033–2051

    Article  Google Scholar 

  21. Bonello N, Zhang R, Chen S et al (2009) Reconfigurable rateless codes. IEEE Trans Wirel Commun 8:5592–5600

    Article  Google Scholar 

  22. Zhang K, Ma X, Zhao S et al (2012) A new ensemble of rate-compatible LDPC codes. In: Proceedings of IEEE international symposium on information theory proceedings (ISIT). Cambridge, MA, pp 2536–2540

  23. Ma X, Zhang K, Bai BM et al (2011) Serial concatenation of RS codes with Kite codes: performance analysis, iterative decoding and design. http://arxiv.org/abs/1104.4927

  24. Bai B, Bai BM, Ma X (2012) Simple rateless error-correcting codes for fading channels. Sci China Inf Sci 55:2194–2206

    Article  Google Scholar 

  25. Zhu M, Wei Y, Bai BM et al (2013) Precoded Kite codes for the AWGN channel. In: Proceedings of IEEE international conference on wireless communications and signal processing (WCSP). Hangzhou, China, pp 1–6

  26. Soljanin E, Varnica N, Whiting P (2006) Punctured vs rateless codes for hybrid ARQ. In: Proceedings of IEEE information theory workshop, Punta del Este, Uruguay, pp 155–159

  27. Castura J, Mao Y, Draper S (2006) On rateless coding over fading channels with delay constraints. In: Proceedings of IEEE international symposium on information theory (ISIT). Seattle, WA, pp 1124–1128

  28. Makki B, Graelli Amat A, Eriksson T (2012) On ARQ-based fast-fading channels. IEEE Commun Lett 16:1921–1924

    Article  Google Scholar 

  29. Visotsky E, Sun Y, Tripathi V et al (2005) Reliability-based incremental redundancy with convolutional codes. IEEE Trans Commun 53:987–997

    Article  Google Scholar 

  30. Pai HT, Han YS, Chu YJ (2011) New HARQ scheme based on decoding of tail-biting convolutional codes in IEEE 802.16 e. IEEE Trans Veh Technol 60:912–918

    Article  Google Scholar 

  31. Fricke JC, Hoeher PA (2009) Reliability-based retransmission criteria for hybrid ARQ. IEEE Trans Commun 57:2181–2184

    Article  Google Scholar 

  32. Uhlemann E, Rasmussen LK, Grant AJ et al (2003) Optimal incremental-redundancy strategy for type-II hybrid ARQ. In: Proceedings of IEEE international symposium on information theory (ISIT), Yokohama, p 448

  33. Chen J, Dholakia A, Eleftheriou E et al (2005) Reduced-complexity decoding of LDPC codes. IEEE Trans Commun 53:1288–1299

    Article  Google Scholar 

  34. Hu XY, Eleftheriou E, Arnold DM et al (2001) Efficient implementations of the sum-product algorithm for decoding LDPC codes. In: Proceedings of IEEE global telecommunications conference, San Antonio, TX, vol 2, pp 1036–1036E

  35. Hu K, Castura J, Mao Y et al (2006) Reduced-complexity decoding of raptor codes over fading channels. In: Proceedings of IEEE global telecommunications conference, San Francisco, CA, pp 1–5

  36. Hu K, Castura J, Mao Y (2007) Performance-complexity tradeoffs of Raptor codes over Gaussian channels. IEEE Commun Lett 11:343–345

    Article  Google Scholar 

  37. Casado AIV, Griot M, Wesel RD (2007) Informed dynamic scheduling for belief-propagation decoding of LDPC codes. In: Proceedings of IEEE international conference on communications, Glasgow, Scotland, pp 932–937

  38. Casado AIV, Griot M, Wesel RD et al (2010) LDPC decoders with informed dynamic scheduling. IEEE Trans Commun 58:3470–3479

    Article  Google Scholar 

  39. AbdulHussein A, Oka A, Lampe L (2008) Decoding with early termination for Raptor codes. IEEE Commun Lett 12:444–446

    Article  Google Scholar 

  40. Chen YM, Lee HC, Ueng YL et al (2012) Flooding-assisted informed dynamic scheduling for rateless codes. In: Proceedings of IEEE wireless communications and networking conference (WCNC), Shanghai, China, pp 173–177

  41. Chen SL, Zhang ZY, Zhang L et al (2013) Belief Propagation with gradual edge removal for Raptor codes over AWGN channel. In: Proceedings of IEEE 24th international symposium on personal indoor and mobile radio communications (PIMRC), London, UK, pp 380–385

  42. Tu K, Zhang ZY, Yao CM et al (2013) A Rateless encoder with adaptive symbol removal for AWGN and fading channels. In: Proceedings of IEEE international conference on wireless communications and signal processing (WCSP), Hangzhou, China, pp 1–6

  43. Szczecinski L, Khosravirad SR, Duhamel P et al (2013) Rate allocation and adaptation for incremental redundancy truncated HARQ. IEEE Trans Commun 61:2580–2590

    Article  Google Scholar 

  44. Makki B, Eriksson T (2010) On the average rate of quasi-static fading channels with ARQ and CSI feedback. IEEE Commun Lett 14:806–808

    Article  Google Scholar 

  45. Elias P (1961) Channel capacity without coding. In: Baghdady EJ (ed) Lectures on Communication System Theory. McGraw-Hill, New York, pp 363–368

  46. Chang S (1956) Theory of information feedback systems. IRE Trans Inform Theory 2:29–40

    Article  Google Scholar 

  47. Chen TY, Seshadri N, Shen BZ (2010) Is feedback a performance equalizer of classic and modern codes? In: Proceedings of IEEE information theory and applications workshop (ITA), San Diego, CA, pp 1–5

  48. Ryan W, Lin S (2009) Channel codes: classical and modern. Cambridge University Press, Cambridge

Download references

Acknowledgments

This work was supported in part by the National Basic Research Program of China (2012CB316100), the National Natural Science Foundation of China (61372074 and 61172082), and National Key Laboratory Foundation of China (9140C530401-120C53201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoming Bai.

Additional information

SPECIAL TOPIC: Advances in Broadband Wireless Communications under High-Mobility Scenarios

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Bai, B., Dou, J. et al. Kite code-based incremental redundancy hybrid ARQ scheme for fast-fading channels. Chin. Sci. Bull. 59, 5029–5041 (2014). https://doi.org/10.1007/s11434-014-0630-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0630-x

Keywords

Navigation