Skip to main content

High-pressure storage of hydrogen fuel: ammonia borane and its related compounds

Abstract

As a promising candidate material for hydrogen storage, ammonia borane (NH3BH3) has attracted significant interest in recent years due to its remarkably high hydrogen content. Subjecting this material to high pressure not only enables the formation of novel phases and compounds with exotic properties, but also improves our basic understanding of material’s behavior at different levels of atomic and molecular interactions. This review focuses on the perspective of high-pressure chemical hydrogen storage related to NH3BH3-based materials. Four main aspects are discussed: the structures and bonding of NH3BH3 over a wide pressure–temperature space, thermolysis of NH3BH3 at high pressure, the formation of a novel high-pressure H-rich compound as a result of storage of additional molecular H2 in NH3BH3, and the potential rehydrogenation of the thermally decomposed NH3BH3 under the extreme of pressure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Dresselhaus MS, Thomas IL (2001) Alternative energy technologies. Nature 414:332–337

    Article  Google Scholar 

  2. Schlapbach L, Züttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:353–358

    Article  Google Scholar 

  3. Shore SG, Parry RW (1955) The crystalline compound ammoniaborane, H3NBH3. J Am Chem Soc 77:6084–6085

    Article  Google Scholar 

  4. Hu MG, Geanangel RA, Wendlandt WW (1978) Thermal-decomposition of ammonia–borane. Thermochim Acta 23:249–255

    Article  Google Scholar 

  5. Baitalow F, Baumann J, Wolf G et al (2002) Thermal decomposition of B–N–H compounds investigated by using combined thermoanalytical methods. Thermochim Acta 391:159–168

    Article  Google Scholar 

  6. Kelly HC, Marriott VB (1979) Re-examination of the mechanism of acid-catalyzed amine-borane hydrolysis–hydrolysis of NH3·BH3. Inorg Chem 18:2875–2878

    Article  Google Scholar 

  7. Stephens FH, Baker RT, Matus MH et al (2007) Acid initiation of ammonia–borane dehydrogenation for hydrogen storage. Angew Chem Int Ed 46:746–749

    Article  Google Scholar 

  8. Keaton RJ, Blacquiere JM, Baker RT (2007) Base metal catalyzed dehydrogenation of ammonia–borane for chemical hydrogen storage. J Am Chem Soc 129:1844–1845

    Article  Google Scholar 

  9. Cheng FY, Ma H, Li YM et al (2007) Ni1−x Pt x (x = 0–0.12) hollow spheres as catalysts for hydrogen generation from ammonia borane. Inorg Chem 46:788–794

    Article  Google Scholar 

  10. Bluhm ME, Bradley MG, Butterick R et al (2006) Amineborane-based chemical hydrogen storage: enhanced ammonia borane dehydrogenation in ionic liquids. J Am Chem Soc 128:7748–7749

    Article  Google Scholar 

  11. Autrey T, Gutowska A, Li LY et al (2004) Chemical hydrogen storage in nano-structured materials. Control of hydrogen release and reactivity from ammonia borane complexes. Abstr Pap Am Chem Soc 227:U1078–U1079

    Google Scholar 

  12. Gutowska A, Li LY, Shin YS et al (2005) Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angew Chem Int Ed 44:3578–3582

    Article  Google Scholar 

  13. Dillen J, Verhoeven P (2003) The end of a 30-year-old controversy? A computational study of the B–N stretching frequency of BH3–NH3 in the solid state. J Phys Chem A 107:2570–2577

    Article  Google Scholar 

  14. Merino G, Bakhmutov VI, Vela A (2002) Do cooperative proton–hydride interactions explain the gas-solid structural difference of BH3NH3? J Phys Chem A 106:8491–8494

    Article  Google Scholar 

  15. Allis DG, Kosmowski ME, Hudson BS (2004) The inelastic neutron scattering spectrum of H3B:NH3 and the reproduction of its solid-state features by periodic DFT. J Am Chem Soc 126:7756–7757

    Article  Google Scholar 

  16. Richardson TB, Sd Gala, Crabtree RH et al (1995) Unconventional hydrogen bonds: intermolecular B–H···H–N interactions. J Am Chem Soc 117:12875–12876

    Article  Google Scholar 

  17. Morrison CA, Siddick MM (2004) Dihydrogen bonds in solid BH3NH3. Angew Chem Int Ed 43:4780–4782

    Article  Google Scholar 

  18. Matus MH, Anderson KD, Camaioni DM et al (2007) Reliable predictions of the thermochemistry of boron–nitrogen hydrogen storage compounds: B x N x H y ,x = 2, 3. J Phys Chem A 111:4411–4421

    Article  Google Scholar 

  19. Hoon CF, Reynhardt EC (1983) Molecular-dynamics and structures of amine boranes of the type R3N.BH3.1. X-ray-investigation of H3N.BH3 at 295-K and 110-K. J Phys C Solid State Phys 16:6129–6136

    Article  Google Scholar 

  20. Bowden ME, Gainsford GJ, Robinson WT (2007) Room-temperature structure of ammonia borane. Aust J Chem 60:149–153

    Article  Google Scholar 

  21. Klooster WT, Koetzle TF, Siegbahn PEM et al (1999) Study of the N–H⋯H–B dihydrogen bond including the crystal structure of BH3NH3 by neutron diffraction. J Am Chem Soc 121:6337–6343

    Article  Google Scholar 

  22. Hess NJ, Bowden ME, Parvanov VM et al (2008) Spectroscopic studies of the phase transition in ammonia borane: Raman spectroscopy of single crystal NH3BH3 as a function of temperature from 88 to 330 K. J Chem Phys 128:034508

    Article  Google Scholar 

  23. Yang JB, Lamsal J, Cai Q et al (2008) Structural evolution of ammonia borane for hydrogen storage. Appl Phys Lett 92:091916

    Article  Google Scholar 

  24. Hess NJ, Schenter GK, Hartman MR et al (2009) Neutron powder diffraction and molecular simulation study of the structural evolution of ammonia borane from 15 to 340 K. J Phys Chem A 113:5723–5735

    Article  Google Scholar 

  25. Trudel S, Gilson DFR (2003) High-pressure Raman spectroscopic study of the ammonia–borane complex. Evidence for the dihydrogen bond. Inorg Chem 42:2814–2816

    Article  Google Scholar 

  26. Custelcean R, Dreger ZA (2003) Dihydrogen bonding under high pressure: a Raman study of BH3NH3 molecular crystal. J Phys Chem B 107:9231–9235

    Article  Google Scholar 

  27. Lin Y, Mao WL, Drozd V et al (2008) Raman spectroscopy study of ammonia borane at high pressure. J Chem Phys 129:234509

    Article  Google Scholar 

  28. Chellappa RS, Somayazulu M, Struzhkin VV et al (2009) Pressure-induced complexation of NH3BH3–H2. J Chem Phys 131:224515

    Article  Google Scholar 

  29. Xie ST, Song Y, Liu ZX (2009) In situ high-pressure study of ammonia borane by Raman and IR spectroscopy. Can J Chem Rev Can Chim 87:1235–1247

    Article  Google Scholar 

  30. Filinchuk Y, Nevidomskyy AH, Chernyshov D et al (2009) High-pressure phase and transition phenomena in ammonia borane NH3BH3 from X-ray diffraction, Landau theory, and ab initio calculations. Phys Rev B 79:214111

    Article  Google Scholar 

  31. Chen JH, Couvy H, Liu HZ et al (2010) In situ X-ray study of ammonia borane at high pressures. Int J Hydrog Energy 35:11064–11070

    Article  Google Scholar 

  32. Kumar RS, Ke XZ, Zhang JZ et al (2010) Pressure induced structural changes in the potential hydrogen storage compound ammonia borane: a combined X-ray, neutron and theoretical investigation. Chem Phys Lett 495:203–207

    Article  Google Scholar 

  33. Wang LC, Bao K, Meng X et al (2011) Structural and dynamical properties of solid ammonia borane under high pressure. J Chem Phys 134:024517

    Article  Google Scholar 

  34. Lin Y, Ma HW, Matthews CW et al (2012) Experimental and theoretical studies on a high pressure monoclinic phase of ammonia borane. J Phys Chem C 116:2172–2178

    Article  Google Scholar 

  35. Ramzan M, Ahuja R (2010) High pressure and temperature study of hydrogen storage material BH3NH3 from ab initio calculations. J Phys Chem Solids 71:1137–1139

    Article  Google Scholar 

  36. Andersson O, Filinchuk Y, Dmitriev V et al (2011) Phase coexistence and hysteresis effects in the pressure–temperature phase diagram of NH3BH3. Phys Rev B 84:024115

    Article  Google Scholar 

  37. Liu A, Song Y (2012) In situ high-pressure and low-temperature study of ammonia borane by Raman spectroscopy. J Phys Chem C 116:2123–2131

    Article  Google Scholar 

  38. Najiba S, Chen JH, Drozd V et al (2012) Tetragonal to orthorhombic phase transition of ammonia borane at low temperature and high pressure. J Appl Phys 111:112618

    Article  Google Scholar 

  39. Najiba S, Chen JH, Drozd V et al (2013) Ammonia borane at low temperature down to 90 K and high pressure up to 15 GPa. Int J Hydrog Energy 38:4628–4635

    Article  Google Scholar 

  40. Wang S, Mao WL, Autrey T (2009) Bonding in boranes and their interaction with molecular hydrogen at extreme conditions. J Chem Phys 131:144508

    Article  Google Scholar 

  41. Nylen J, Sato T, Soignard E et al (2009) Thermal decomposition of ammonia borane at high pressures. J Chem Phys 131:104506

    Article  Google Scholar 

  42. Nylen J, Eriksson L, Benson D et al (2013) Characterization of a high pressure, high temperature modification of ammonia borane (BH3NH3). J Chem Phys 139:054507

    Article  Google Scholar 

  43. Liang YF, Tse JS (2012) First-principles study on the mechanisms for H2 formation in ammonia borane at ambient and high pressure. J Phys Chem C 116:2146–2152

    Article  Google Scholar 

  44. Song Y (2013) New perspectives on potential hydrogen storage materials using high pressure. Phys Chem Chem Phys 15:14524–14547

    Article  Google Scholar 

  45. Mao WL, Mao HK, Goncharov AF et al (2002) Hydrogen clusters in clathrate hydrate. Science 297:2247–2249

    Article  Google Scholar 

  46. Vos WL, Finger LW, Hemley RJ et al (1993) Novel H2–H2O clathrates at high-pressures. Phys Rev Lett 71:3150–3153

    Article  Google Scholar 

  47. Somayazulu MS, Finger LW, Hemley RJ et al (1996) New high-pressure compounds in methane–hydrogen mixtures. Science 271:1400–1402

    Article  Google Scholar 

  48. Lin Y, Mao WL, Mao HK (2009) Storage of molecular hydrogen in an ammonia borane compound at high pressure. Proc Natl Acad Sci USA 106:8113–8116

    Article  Google Scholar 

  49. Mao WL, Koh CA, Sloan ED (2007) Clathrate hydrates under pressure. Phys Today 60:42–47

    Article  Google Scholar 

  50. Chellappa RS, Autrey T, Somayazulu M et al (2010) High-pressure hydrogen interactions with polyaminoborane and polyiminoborane. ChemPhysChem 11:93–96

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by United States Department of Energy through the Stanford Institute for Materials and Energy Science (DE-AC02-76SF00515).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Lin.

Additional information

SPECIAL TOPIC: High Pressure Physics

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Mao, W.L. High-pressure storage of hydrogen fuel: ammonia borane and its related compounds. Chin. Sci. Bull. 59, 5235–5240 (2014). https://doi.org/10.1007/s11434-014-0624-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0624-8

Keywords

  • Hydrogen storage
  • Ammonia borane
  • High pressure