Advertisement

Chinese Science Bulletin

, Volume 59, Issue 29–30, pp 3858–3867 | Cite as

Orbit determination of Chang’E-3 and positioning of the lander and the rover

  • Yong Huang
  • Shengqi Chang
  • Peijia Li
  • Xiaogong Hu
  • Guangli Wang
  • Qinghui Liu
  • Weimin Zheng
  • Min Fan
Article Astronomy

Abstract

Chang’E-3 landed on the east of Sinus Iridum area on December 14, 2013, performing China’s first successful soft landing on the lunar surface. We present the results on precision orbit determination and positioning of the lander and the rover. We describe the data, modeling, and methods used to achieve position knowledge over the period December 2–21, 2014. In addition to the radiometric X-band range and Doppler tracking data, delta differential one-way ranging data are also used in the calculation, which show that they strongly improve the accuracy of the orbit reconstruction. Total position overlap differences are about 20 and 30 m for the 100 km × 100 km and 100 km× 15 km lunar orbit, respectively, increased by ~50 % with respect to CE-2 and at the same level as other lunar spacecrafts of recent era such as SELENE and lunar reconnaissance orbiter (LRO). The position error of the soft landing trajectory is less than 100 m. A kinematic statistical method is applied to determine the position of the lander and relative position of the rover with respect to the lander. The position difference of the lander is better than 50 m compared to LRO photograph result. Compared with the delta very long baseline interferometry (VLBI) group delay between the lander and the rover, the delta VLBI phase delay can improve the relative position of the rover from ~1,000 to ~1 m.

Keywords

Chang’E-3 Orbit determination Lander Rover 

Notes

Acknowledgments

The authors would like to thank VLBI tracking subsystem at Shanghai Astronomical Observatory for providing the VLBI data used in this paper and thank Beijing Aerospace Control and Command Centre for providing comparative data. We would also like to thank Prof. Dongrong Jiang, Xiuzhong Zhang, Jinling Li, Zhihan Qian, Fengchun Shu, and Xiaoyu Hong et al. for comments and suggestions. This work was supported by the National Natural Science Foundation of China (11073047, 11173052), the Science and Technology Commission of Shanghai (12DZ2273300), the National High Technology Research and Development Program of China (2012AA121603), the Planetary Sciences Laboratory of Chinese Academy of Sciences, and the Lunar Exploration Project of China.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Huang Y (2006) Orbit determination of the first Chinese lunar exploration spacecraft CE-1. Doctor Dissertation. Shanghai Astronomical Observatory, Shanghai (in Chinese)Google Scholar
  2. 2.
    Yan JG, Ping JS, Li F et al (2010) Chang’E-1 precision orbit determination and lunar gravity field solution. Adv Space Res 46:50–57CrossRefGoogle Scholar
  3. 3.
    Chen M, Tang G, Cao J, et al (2011) Precision orbit determination of CE-1 lunar satellite, vol 36. Geomatics and Information Science of Wuhan University, pp 212−217 (in Chinese)Google Scholar
  4. 4.
    Li PJ, Hu XG, Huang Y et al (2012) Orbit determination for Chang’E-2 lunar probe and evaluation of lunar gravity models. Sci China Phys Mech Astron 55:514–522CrossRefGoogle Scholar
  5. 5.
    Chen M, Zhang Y, Cao JF et al (2012) Orbit determination and tracking technology of CE-2 satellite. Chin Sci Bull (Chin Ver) 57:689–696 (in Chinese)CrossRefGoogle Scholar
  6. 6.
    Wu WR, Wang GL, Jie DG et al (2013) High-accuracy VLBI technique using ∆DOR signals. Sci Sin Tech 43:185–196 (in Chinese)Google Scholar
  7. 7.
    Song YZ, Huang Y, Hu XG et al (2013) Spacecraft orbit determination with B spline approximation method. Acta Astronom Sin 54:370–381 (in Chinese)Google Scholar
  8. 8.
    Huang Y, Hu XG, Li PJ et al (2012) Precise positioning of the Chang’E-3 lunar lander using a kinematic statistical method. Chin Sci Bull 57:4545–4551CrossRefGoogle Scholar
  9. 9.
    Salzberg IM (1973) Tracking the Apollo lunar rover with interferometry techniques. Proc IEEE 61:1233–1236CrossRefGoogle Scholar
  10. 10.
    Liu QH, Chen M, Xiong WM et al (2010) Relative position determination of a lunar rover using high-accuracy multi-frequency same-beam VLBI. Sci Sin Phys Mech Astron 53:571–578Google Scholar
  11. 11.
    Wu WR, Huang L, Jie DG et al (2011) Design and experiment of X-band TT&C system for the project of CE-2. Sci Sin Tech 41:1171–1183 (in Chinese)Google Scholar
  12. 12.
    Goossens S, Matsumoto K, Rowlands DD et al (2011) Orbit determination of the SELENE satellites using multi-satellite data types and evaluation of SELENE gravity field models. J Geodesy 85:487–504CrossRefGoogle Scholar
  13. 13.
    Cao JF, Huang Y, Hu XG et al (2010) Mars express tracking and orbit determination trials with Chinese VLBI network. Chin Sci Bull 55:3654–3660CrossRefGoogle Scholar
  14. 14.
    Li JS (1995) Precise orbit determination of satellite. Chinese People’s Liberation Army Press, Beijing (in Chinese)Google Scholar
  15. 15.
    Huang Y, Hu XG, Huang C et al (2009) Precise orbit determination of a maneuvered GEO satellite using CAPS ranging data. Sci China Ser G Phys Mech Astron 52:346–352CrossRefGoogle Scholar
  16. 16.
    Chang SQ, Huang Y, Song YZ et al (2014) Research on trajectory determination strategy for soft landing of CE-3. J Spacecr TT C Technol 33:236–243 (in Chinese)Google Scholar
  17. 17.
    Zhang FP, Huang C, Liao XH et al (2001) Precision ERS-2 orbit determination combining multiple tracking techniques. Chin Sci Bull 46:1756–1760CrossRefGoogle Scholar
  18. 18.
    Carranza E, Konopliv A, Ryne M (1999) Lunar prospector orbit determination uncertainties using the high resolution lunar gravity models. Astrodynamics Specialist Conference, Girdwood, pp 99–1369Google Scholar
  19. 19.
    Mazarico E, Rowlands DD, Neumann GA et al (2012) Orbit determination of the lunar reconnais-sance orbiter. J Geodesy 86:193–207CrossRefGoogle Scholar
  20. 20.
    Konopliv AS, Asmar SW, Carranza E et al (2001) Recent gravity models as a result of the Lunar pro-spector mission. Icarus 150:1–18CrossRefGoogle Scholar
  21. 21.
    Zuber MT, Smith DE, Watkins MM et al (2013) Gravity field of the moon from the gravity recovery and interior laboratory (GRAIL) mission. Science 339:668–671CrossRefGoogle Scholar
  22. 22.
    Konopliv AS, Park RS, Yuan D (2013) The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL primary mission. J Geophys Res 118:1415–1434CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yong Huang
    • 1
  • Shengqi Chang
    • 1
    • 2
  • Peijia Li
    • 1
  • Xiaogong Hu
    • 1
  • Guangli Wang
    • 1
  • Qinghui Liu
    • 1
  • Weimin Zheng
    • 1
  • Min Fan
    • 3
  1. 1.Shanghai Astronomical ObservatoryChinese Academy of SciencesShanghaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Beijing Institute of Tracking and Telecommunications TechnologyBeijingChina

Personalised recommendations