Skip to main content
Log in

Integrated extremum seeking control method and its application to the suppression of combustion instabilities

  • Article
  • Engineering Thermophysics
  • Published:
Chinese Science Bulletin

Abstract

The suppression of combustion instabilities using the extremum seeking algorithm (ESA) is analyzed. A function model of the pressure oscillation and the mean fuel–air ratio in the combustion chamber is derived and implies an extremum relation between the oscillation amplitude of the pressure and the mean fuel–air ratio. Hence, the control system of combustion instabilities can be considered as an extremum seeking control system (ESCS). All traditional ESCSs employ a separate design method, which divides the design of the ESA from the controller design. It is thus difficult for traditional ESCSs to achieve optimal performance of the control system. To solve this problem, an integrated extremum seeking control method for ESCSs is proposed. Using this integrated control, the minimal oscillation amplitude of the pressure is realized by adaptively seeking the optimal mean fuel–air ratio. Hence, this design method can effectively suppress combustion instabilities in aeroengines. By comparing simulation results, the effectiveness of the proposed method is validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Banaszuk A, Zhang Y, Jacobson CA (2000) Adaptive control of combustion instability using extremum-seeking. In: American Automatic Control Council, International Federation of Automatic Control (eds) Proceedings of the American control conference, Chicago, June 2000. IEEE, New York, pp 416–422

  2. Banaszuk A, Hagen G, Mehta PG et al (2003) A linear model for control of thermoacoustic instabilities on an annular domain. In: Lewis FK, Abdallah C (eds) Proceedings of the 42nd IEEE conference on decision and control, Maui, December 2003. IEEE, New York, pp 2346–2351

  3. Steele RC, Cowell LH, Cannon SM et al (2000) Passive control of combustion instability in lean premixed combustors. J Eng Gas Turb Power 122:412–419

    Article  Google Scholar 

  4. Richards GA, Straub DL, Robey EH (2003) Passive control of combustion dynamics in stationary gas turbines. J Propul Power 19:795–810

    Article  Google Scholar 

  5. Fung YT, Yang V (1992) Active control of nonlinear pressure oscillations in combustion chambers. J Propul Power 8:1282–1289

    Article  Google Scholar 

  6. Krstic M, Krupadanam A, Jacobson C (1999) Self-tuning control of a nonlinear model of combustion instabilities. IEEE Trans Contr Syst Technol 7:424–435

    Article  Google Scholar 

  7. Hong BS, Yang V, Ray A (2000) Robust feedback control of combustion instability with modeling uncertainty. Combust Flame 120:91–106

    Article  Google Scholar 

  8. Chu YC, Glover K, Dowling AP (2003) Control of combustion oscillations via H loop-shaping, μ-analysis and integral quadratic constraints. Automatica 39:219–231

    Article  Google Scholar 

  9. Annaswamy AM, Fleifil M, Rumsey JW et al (2000) Thermoacoustic instability: model-based optimal control designs and experimental validation. IEEE Trans Contr Syst Technol 8:905–918

    Article  Google Scholar 

  10. Yang V, Sinha A, Fung YT (1992) State-feedback control of longitudinal combustion instabilities. J Propul Power 8:66–73

    Article  Google Scholar 

  11. Morgans AS, Annaswamy AM (2008) Adaptive control of combustion instabilities for combustion systems with right-half plane zeros. Combust Sci Technol 180:1549–1571

    Article  Google Scholar 

  12. Kopasakis G, Delaat JC, Chang CT (2009) Adaptive instability suppression controls method for aircraft gas turbine engine combustors. J Propul Power 25:618–627

    Article  Google Scholar 

  13. Krstic M, Wang HH (2000) Stability of extremum seeking feedback for general nonlinear dynamic systems. Automatica 36:595–601

    Article  Google Scholar 

  14. Bastin G, Nesic D, Tan Y et al (2009) On extremum seeking in bioprocesses with multi-valued cost functions. Biotechnol Progr 25:683–690

    Article  Google Scholar 

  15. Cougnona P, Dochain D, Guay M et al (2011) On-line optimization of fedbatch bioreactors by adaptive extremum seeking control. J Process Contr 21:1526–1532

    Article  Google Scholar 

  16. Drakunov S, Ozguner U, Dix P et al (1995) ABS control using optimum search via sliding modes. IEEE Trans Contr Syst Technol 3:79–85

    Article  Google Scholar 

  17. Popovic D, Jankovic M, Magner S et al (2006) Extremum seeking methods for optimization of variable cam timing engine operation. IEEE Trans Contr Syst Technol 14:398–407

    Article  Google Scholar 

  18. Peterson KS, Stefanopoulou AG (2004) Extremum seeking control for soft landing of an electromechanical valve actuator. Automatica 40:1063–1069

    Article  Google Scholar 

  19. Wang HH, Yeung S, Krstic M (2000) Experimental application of extremum seeking on an axial-flow compressor. IEEE Trans Contr Syst Technol 8:300–309

    Article  Google Scholar 

  20. Zhang C, Arnold D, Ghods N et al (2007) Source seeking with non-holonomic unicycle without position measurement and with tuning of forward velocity. Syst Control Lett 56:245–252

    Article  Google Scholar 

  21. Zhang C, Siranosian A, Krstic M (2007) Extremum seeking for moderately unstable systems and for autonomous vehicle target tracking without position measurements. Automatica 43:1832–1839

    Article  Google Scholar 

  22. Matveev AS, Teimoori H, Savkin AV (2011) Navigation of a unicycle-like mobile robot for environmental extremum seeking. Automatica 47:85–91

    Article  Google Scholar 

  23. Biyik E, Arcak M (2007) Gradient climbing information via extremum seeking and passivity-based coordination rules. In: Castanon D, Spall J (eds) Proceedings of 46th IEEE conference on decision and control, 2007 Dec 12–14. IEEE Press, New Orleans, USA, pp 3133–3138

  24. Ogren P, Fiorelli E, Leonard NE (2004) Cooperative control of mobile sensor networks: adaptive gradient climbing in a distributed environment. IEEE Trans Automat Contr 49:1292–1302

    Article  Google Scholar 

  25. Dower PM, Farrell PM, Nesic D (2008) Extremum seeking control of cascaded Raman optical amplifiers. IEEE Trans Contr Syst Technol 16:396–407

    Article  Google Scholar 

  26. Carnevale D, Astolfi A, Centioli C et al (2009) A new extremum seeking technique and its application to maximize RF heating on FTU. Fusion Eng Des 84:554–558

    Article  Google Scholar 

  27. Beaudoin JF, Cadot O, Aider JL et al (2006) Bluff-body drag reduction by extremum-seeking control. J Fluid Struct 22:973–978

    Article  Google Scholar 

  28. Zhang XT, Dawson DM, Dixon WE et al (2006) Extremum seeking nonlinear controllers for a human exercise machine. IEEE/ASME Trans Mech 11:233–240

    Article  Google Scholar 

  29. Moase WH, Manzie C, Brear MJ (2010) Newton-like extremum seeking for the control of thermoacoustic instability. IEEE Trans Automat Contr 55:2094–2105

    Article  Google Scholar 

  30. Tan Y, Nesic D, Mareels I (2008) On the choice of dither in extremum seeking systems: a case study. Automatica 44:1446–1450

    Article  Google Scholar 

  31. Oliveira TR, Hsu L, Peixoto AJ (2011) Output-feedback global tracking for unknown control direction plants with application to extremum-seeking control. Automatica 47:2029–2038

    Article  Google Scholar 

  32. Liu SJ, Krstic M (2010) Stochastic averaging in continuous time and its applications to extremum seeking. IEEE Trans Automat Contr 55:2235–2250

    Article  Google Scholar 

  33. Banaszuk A, Zhang YP, Jacobson CA (2000) Active control of combustion instabilities in gas turbine engines for low emission. Part I: physics-based and experimentally identified models of combustion instability. Technical Report, RTO AVT symposium

  34. Peracchio AA, Proscia WM (1999) Nonlinear heat-release/acoustic model for thermoacoustic instability in lean premixed combustors. J Eng Gas Turb Power 121:415–421

    Article  Google Scholar 

  35. Hathout JP, Fleifil M, Annaswamy AM et al (2002) Combustion instability active control using periodic fuel injection. J Propul Power 18:390–399

    Article  Google Scholar 

  36. Huang YH, Wang ZG, Zhou J (2002) Nonlinear theory of combustion stability in liquid rocket engines. Sci China Ser B Chem 32:225–234 (in Chinese)

  37. Evesque S (2000) Adaptive control of combustion oscillations. Doctor Dissertation. University of Cambridge, Cambridge

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (60674090).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zuo.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, B., Li, J. & Liu, D. Integrated extremum seeking control method and its application to the suppression of combustion instabilities. Chin. Sci. Bull. 59, 4536–4549 (2014). https://doi.org/10.1007/s11434-014-0513-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0513-1

Keywords

Navigation