Skip to main content
Log in

Crystal structures, antibacterial activity and thermal decomposition kinetics of lanthanide complexes with 4-chloro-2-methoxybenzoic acid and 1,10-phenanthroline

  • Article
  • Physical Chemistry
  • Published:
Chinese Science Bulletin

Abstract

A series of lanthanide complexes [Ln(4-Cl-2-MOBA)3phen]2 (Ln=Sm (1), Nd (2), Ho (3), Eu (4), Dy (5), and Tb (6); 4-Cl-2-MOBA=4-chloro-2-methoxybenzoate, phen=1,10-phenanthroline) were synthesized and characterized. The single-crystal X-ray diffraction demonstrates that 13 are isomorphous, which present dimeric structures with four 4-Cl-2-MOBA anions function as bridging ligands. Complexes 1 and 46 display their characteristic luminescence emission bands of central Ln3+ ions. The heat capacities, the thermodynamic functions and the thermogravimetry–Fourier transform infrared spectra of gaseous products of complexes 16 were investigated. Their non-isothermal kinetics of the second decomposition stage was studied by the integral isoconversional non-linear method and Stark method. Furthermore, 16 exhibited excellent antibacterial activity against Candida albicans, Escherichia coli and Staphylococcus aureu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Song XZ, Song SY, Qin C et al (2012) Syntheses, structures, and photoluminescent properties of coordination polymers based on 1,4-bis(imidazol-l-ylmethyl) benzene and various aromatic dicarboxylic acids. Cryst Growth Des 12:253–263

    Article  Google Scholar 

  2. Bunzli JCG (2006) Benefiting from the unique properties of lanthanide ions. Acc Chem Res 39:53–61

    Article  Google Scholar 

  3. Aspinall HC (2002) Chiral lanthanide complexes: coordination chemistry and applications. Chem Rev 102:1807–1850

    Article  Google Scholar 

  4. Tsukube H, Shinoda S (2002) Lanthanide complexes in molecular recognition and chirality sensing of biological substrates. Chem Rev 102:2389–2404

    Article  Google Scholar 

  5. Adachi G, Imanaka N, Tamura S (2002) Ionic conducting lanthanide oxides. Chem Rev 102:2405–2430

    Article  Google Scholar 

  6. Wang Z, Bai FY, Xing YH et al (2010) Two new 3D lanthanide coordination polymers with benzenesulfonic and adipic acids: synthesis, structure and luminescent properties. Z Anorg Allg Chem 636:1570–1575

    Article  Google Scholar 

  7. Pang X, Li DC, Peng A (2002) Application of rare-earth elements in the agriculture of China and its environmental behavior in soil. Environ Sci Pollut Res Int 9:143–148

    Article  Google Scholar 

  8. Fedin VP, Kalinina IV, Virovets AV et al (2003) Syntheses and structures of layered compounds based on lanthanides(III) and cubane molybdenum and tungsten telluride cyano complexes. Chem Bull 52:126–131

    Article  Google Scholar 

  9. Li HH, Niu Z, Han T et al (2011) A microporous lanthanide metal-organic framework containing channels: synthesis, structure, gas adsorption and magnetic properties. Sci China Chem 9:1423–1429

    Article  Google Scholar 

  10. He QZ, Yang J, Min H et al (2006) Studies on the spectra and antibacterial properties of rare earth dinuclear complexes with L-phenylalanine and o-phenanthroline. Mater Lett 60:317–320

    Article  Google Scholar 

  11. Oliveira LH, de Moura AP, Longo E et al (2013) Luminescent properties of hybrid materials prepared by the polymeric precursor method. J Am Ceram Soc 579:227–235

  12. Lin JT, Huo JS, Cai YP et al (2013) Controllable synthesis of Eu3+/Tb3+ activated lutetium fluorides nanocrystals and their photophysical properties. J Lumin 144:1–5

    Article  Google Scholar 

  13. Hou HW, Wei YL, Song YL et al (2004) First octameric ellipsoid lanthanide(III) complexes: crystal structure and nonlinear optical absorptive and refractive properties. Inorg Chem 43:1323–1327

    Article  Google Scholar 

  14. Geary WJ (1971) The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord Chem Rev 7:81–122

    Article  Google Scholar 

  15. Wang JF, Li H, Zhang JJ et al (2012) Crystal structures and thermal decomposition mechanism of four lanthanide complexes with halogen-benzoic acid and 1,10-phenanthroline. Sci China Chem 55:2161–2175

    Article  Google Scholar 

  16. Tang K, Zhang JJ, Ren N et al (2012) Crystal structures and thermal decomposition kinetics of lanthanide complexes with 3,4,5-trimethoxybenzoic acid and 1,10-phenanthroline. Sci China Chem 55:1283–1293

    Article  Google Scholar 

  17. Ye HM, Ren N, Zhang JJ et al (2010) Crystal structures, luminescent and thermal properties of a new series of lanthanide complexes with 4-ethylbenzoic acid. New J Chem 34:533–540

    Article  Google Scholar 

  18. Tang K, Liu HM, Ren N et al (2012) Crystal structures, luminescence, and thermal properties of lanthanide complexes with 2,3,4-trimethoxybenzoic acid and 1,10-phenanthroline. J Chem Thermodyn 47:428–436

    Article  Google Scholar 

  19. Yin MC, Ai CC, Yuan LJ et al (2004) Synthesis, structure and luminescent property of a binuclear terbium complex [Tb2(Hsal)8(H2O)2][(Hphen)2]·2H2O. J Mol Struct 691:33–37

    Article  Google Scholar 

  20. Lei ZH, Zhao K, Gu YK et al (2011) Crystal structure and luminescence of a europium coordination polymer {[Eu(p–MOBA)3·2H2O]·0.5H2O·0.5(4,4′-bipy)}. J Rare Earths 29:303–309

    Article  Google Scholar 

  21. Liu JY, Ren N, Zhang JJ et al (2013) Crystal structures, thermal properties, and biological activities of a series of lanthanide compounds with 2, 4-dichlorobenzoic acid and 1,10-phenanthroline. Ind Eng Chem Res 52:6156–6163

    Article  Google Scholar 

  22. Li X, Wang CY, Hu HM (2008) Studies on some lanthanide(III) complexes with 4-hydroxyantipyrine. Inorg Chem Commun 11:345–348

    Google Scholar 

  23. Lei ZH, Zhao K, Gu YK et al (2011) Synthesis, crystal structure and properties of a samarium nitrate complex with 2-idobenzoic acid and 2,2′-bipyridine. J Rare Earths 29:303–309

    Article  Google Scholar 

  24. Li X, Wu XS, Sun HL et al (2009) Novel 1-D double chain lanthanide complexes: synthesis, structure and luminescence. Inorg Chim Acta 362:2837–2841

    Article  Google Scholar 

  25. Vyazovkin S, Dollimore D (1996) Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. J Chem Inf Comp Sci 36:42–45

    Article  Google Scholar 

  26. Starink MJ (1996) A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochim Acta 288:97–104

    Article  Google Scholar 

  27. Guo JP, Liu BP, Lv XC et al (2007) Molar heat capacities, thermodynamic properties, and thermal stability of trans-4-(aminomethyl) cyclohexanecarboxylic acid. J Chem Eng 52:1678–1680

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21073053, 21173067 and 20773034) and the Natural Science Foundation of Hebei Province (B2012205022, B2011205037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Jun Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 522 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YY., Ren, SX., Zhang, JJ. et al. Crystal structures, antibacterial activity and thermal decomposition kinetics of lanthanide complexes with 4-chloro-2-methoxybenzoic acid and 1,10-phenanthroline. Chin. Sci. Bull. 59, 3398–3405 (2014). https://doi.org/10.1007/s11434-014-0490-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0490-4

Keywords

Navigation