Chinese Science Bulletin

, Volume 59, Issue 22, pp 2693–2701 | Cite as

Serial time-encoded amplified microscopy for ultrafast imaging based on multi-wavelength laser

Article Optoelectronics & Laser


In this paper, a serial time-encoded amplified microscopy (STEAM) by employing a multi-wavelength laser as the light source is proposed and experimentally demonstrated. This system achieves ultrafast optical imaging with a tunable frame rate. The measuring range depends on the spectrum width of the multi-wavelength laser. Through tuning the speed of the modulating signal, the frame rate ranges from 100 to 250 MHz. In addition, the spatial resolution can be improved by increasing the group velocity dispersion and reducing the wavelength spacing. Finally, with the development of photonic integrate circuits (PIC), the multi-wavelength laser source has the potential for integration on a photonic chip and thus the size of the proposed STEAM could be reduced in the future.


Imaging ultrafast phenomena Microscopy Space-frequency mapping Frequency-time mapping Time-spectrum convolution 



This work was supported by the National Natural Science Foundation of China (61377002). Ming Li was supported in part by the “Thousand Young Talent” program.


  1. 1.
    Lee KL, Fok MP, Wan SM et al (2004) Optically controlled Sagnac loop comb filter. Opt Express 12:6335–6340CrossRefGoogle Scholar
  2. 2.
    Kodama R, Norreys PA, Mima K et al (2001) Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature 412:798–802CrossRefGoogle Scholar
  3. 3.
    Petty HR (2004) Spatiotemporal chemical dynamics in living cells: from information trafficking to cell physiology. Biosystems 83:217–224CrossRefGoogle Scholar
  4. 4.
    Gridley T, Woychik R (2007) Laser surgery for mouse geneticists. Nat Biotechnol 25:59–60CrossRefGoogle Scholar
  5. 5.
    Yanik MF, Cinar H, Cinar HN et al (2004) Functional regeneration after laser axotomy. Nature 432:822CrossRefGoogle Scholar
  6. 6.
    Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026CrossRefGoogle Scholar
  7. 7.
    Etoh TG, Le Vo C, Hashishin Y et al (2007) Evolution of ultra-high-speed CCD imagers. Plasma Fusion Res 2:1–8CrossRefGoogle Scholar
  8. 8.
    Barty A, Boutet S, Bogan MJ et al (2008) Ultrafast single-shot diffraction imaging of nanoscale dynamics. Nat Phys 2:415–419Google Scholar
  9. 9.
    Goda K, Tsia KK, Jalali B (2009) Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature 458:1145–1149CrossRefGoogle Scholar
  10. 10.
    Zhang C, Qiu Y, Zhu R et al (2011) Serial time-encoded amplified microscopy (STEAM) based on a stabilized picosecond supercontinuum source. Opt Express 19:15810–15816CrossRefGoogle Scholar
  11. 11.
    Xing F, Chen H, Chen M et al (2013) Simple approach for fast real-time line scan microscopic imaging. Appl Opt 52:7049–7053CrossRefGoogle Scholar
  12. 12.
    Goda K, Tsia KK, Jalali B (2008) Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading. Appl Phys Lett 93:131109CrossRefGoogle Scholar
  13. 13.
    Wong TTW, Lau AKS, Wong KKY et al (2012) Optical time-stretch confocal microscopy at 1 μm. Opt Lett 37:3330–3332CrossRefGoogle Scholar
  14. 14.
    Chen H, Wang C, Yazaki A et al (2013) Ultrafast web inspection with hybrid dispersion laser scanner. Appl Opt 52:4072–4076CrossRefGoogle Scholar
  15. 15.
    Li M, Chen X, Fujii T et al (2009) Multiwavelength fiber laser based on the utilization of a phase-shifted phase-only sampled fiber Bragg grating. Opt Lett 34:1717–1719CrossRefGoogle Scholar
  16. 16.
    Kim Y, Doucet S, LaRochelle S (2008) 50-Channel 100-GHz-spaced multiwavelength fiber lasers with single-frequency and single-polarization operation. IEEE Photo Technol Lett 20:1718–1720CrossRefGoogle Scholar
  17. 17.
    Yi X, Minasian RA (2006) Noise mitigation in spectrum sliced microwave photonic signal processors. J Lightw Technol 24:4959–4965CrossRefGoogle Scholar
  18. 18.
    Torres-Company V, Chen L (2009) Radio-frequency waveform generator with time-multiplexing capabilities based on multi-wavelength pulse compression. Opt Express 17:22553–22565CrossRefGoogle Scholar
  19. 19.
    Dorrer C (2009) Statistical analysis of incoherent pulse shaping. Opt Express 17:3341–3352CrossRefGoogle Scholar
  20. 20.
    Park Y, Azaña J (2010) Optical signal processors based on a time-spectrum convolution. Opt Lett 35:796–798CrossRefGoogle Scholar
  21. 21.
    Malacarne A, Ashrafi R, Li M et al (2012) Single-shot photonic time-intensity integration based on a time-spectrum convolution system. Opt Lett 37:1355–1357CrossRefGoogle Scholar
  22. 22.
    Tsia KK, Goda K, Capewell D et al (2010) Performance of serial time-encoded amplified microscopy. Opt Express 18:10016–10028CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.State Key Laboratory on Integrated OptoelectronicsChinese Academy of SciencesBeijingChina
  2. 2.Institute National de la Recherche Scientifique-ÉnergieMatériaux et Télécommunications (INRS-EMT)VarennesCanada

Personalised recommendations