Skip to main content
Log in

Variations of alkenone temperature in the Sea of Japan during the last 170 ka and its paleoceanographic implications

  • Article
  • Oceanology
  • Published:
Chinese Science Bulletin

Abstract

Two sediment cores, KCES1 and ODP797, which were recovered from the Sea of Japan (JS), were measured for alkenone-derived sea surface temperatures (\(U^{{\text{K}}^{\prime}}_{37} {\text{-SSTs}}\)). Our results revealed that the SSTs closely follow the glacial-interglacial cycles during the last 170 ka, except in the last glacial maximum (LGM), during which the SST was higher than in the Holocene. The anomalous high temperature in the LGM is considered as an effect of the intrusion of a low salinity water mass into the JS when the sea level was almost below 130 m. On the glacial-interglacial to orbital timescale, the \( U^{{\text{K}}^{\prime }}_{37} {\text{-SSTs}} \) record in the JS correlated well with the benthic foraminiferal δ 18O record and solar insolation, which suggests the dominant control of solar insolation and its related sea ice development on the SST in the JS. On the sub-orbital/millennial timescale, reduced SST corresponds to an enhanced east asian winter monsoon (EAWM) during the last glacial period (MIS3 and MIS4), indicating the dominant control of sea ice expansion due to the enhanced EAWM on the SST in the JS. In contrast, during the last interglacial period (MIS5), the SST in the JS was controlled by variations in the east Asian summer monsoon. These results highlight the key role of solar insolation and associated glacial-interglacial conditions in the variations of the SST in the JS since the last 170 ka.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ikeda M, Suzuki F, Oba T (1999) A box model of glacial-interglacial variability in the Japan Sea. J Oceanogr 55:483–492

    Article  Google Scholar 

  2. Yoon JH, Kawamura H (2002) The formation and circulation of the intermediate water in the Japan Sea. J Oceanogr 58:197–211

    Article  Google Scholar 

  3. Chang KI, Teague WJ, Lyu SJ et al (2004) Circulation and currents in the southwestern East/Japan Sea: overview and review. Prog Oceanogr 61:105–156

    Article  Google Scholar 

  4. Fujine K, Tada R, Yamamoto M (2009) Paleotemperature response to monsoon activity in the Japan Sea during the last 160 kyr. Palaeogeogr Palaeoclimatol Paleoecol 280:350–360

    Article  Google Scholar 

  5. Lee KE (2007) Surface water changes recorded in Late Quaternary marine sediments of the Ulleung Basin, East Sea (Japan Sea). Palaeogeogr Palaeoclimatol Paleoecol 247:18–31

    Article  Google Scholar 

  6. Ikehara K, Itaki T (2007) Millennial-scale fluctuations in seasonal sea-ice and deep-water formation in the Japan Sea during the late Quaternary. Palaeogeogr Palaeoclimatol Paleoecol 247:131–143

    Article  Google Scholar 

  7. Lee KE, Bahk JJ, Choi J (2008) Alkenone temperature estimates for the East Sea during the last 190,000 years. Org Geochem 39:741–753

    Article  Google Scholar 

  8. Volkman JK, Barrett SM, Blackburn SI et al (1995) Alkenones in Gephyrocapsa oceanica: implications for studies of paleoclimate. Geochim Cosmochim Acta 59:513–520

    Article  Google Scholar 

  9. Brassell SC, Eglinton G, Marlowe IT et al (1986) Molecular stratigraphy: a new tool for climatic assessment. Nature 320:129–133

    Article  Google Scholar 

  10. Prahl FG, Muehlhausen LA, Zahnle DL (1988) Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochim Cosmochim Acta 52:2303–2310

    Article  Google Scholar 

  11. Eglinton T, Conte M, Eglinton G et al (2000) Alkenone biomarkers gain recognition as molecular paleoceanographic proxies. Eos 81:253–260

    Article  Google Scholar 

  12. Freeman KH, Wakeham SG (1992) Variations in the distributions and isotopic compositions of alkenones in Black Sea particles and sediments. Org Geochem 19:277–285

    Article  Google Scholar 

  13. Sikes EL, Farrington JW, Keigwin LD (1991) Use of the alkenone unsaturation ratio U K’37 to determine past sea surface temperatures: core-top SST calibrations and methodology considerations. Earth Planet Sci Lett 104:36–47

    Article  Google Scholar 

  14. Sikes EL, Volkman JK, Robertson LG et al (1997) Alkenones and alkenes in surface waters and sediments of the Southern Ocean: implications for paleotemperature estimation in polar regions. Geochim Cosmochim Acta 61:1495–1505

    Article  Google Scholar 

  15. Weaver PPE, Chapman MR, Eglinton G et al (1999) Combined coccolith, foraminiferal, and biomarker reconstruction of paleoceanographic conditions over the past 120 kyr in the northern North Atlantic (59°N, 23°W). Paleoceanography 14:336–349

    Article  Google Scholar 

  16. Fujine K, Yamamoto M, Tada R et al (2006) A salinity related occurrence of a novel alkenone and alkenoate in late Pleistocene sediments from the Japan Sea. Org Geochem 37:1074–1084

    Article  Google Scholar 

  17. Ijiri A, Wang LJ, Oba T et al (2005) Paleoenvironmental changes in the northern area of the East China Sea during the past 42,000 years. Palaeogeogr Palaeoclimatol Paleoecol 219:239–261

    Article  Google Scholar 

  18. Ishiwatari R, Houtatsu M, Okada H (2001) Alkenone–sea surface temperatures in the Japan Sea over the past 36 kyr: warm temperatures at the last glacial maximum. Org Geochem 32:57–67

    Article  Google Scholar 

  19. Oba T, Kato M, Kitazato H et al (1991) Paleoenvironmental changes in the Japan Sea during the last 85,000 years. Paleoceanography 6:499–518

    Article  Google Scholar 

  20. Matsui H, Tada R, Oba T (1998) Low-salinity isolation event in the Japan Sea in response to eustatic sea-level drop during LGM: Reconstruction based on salinity-balance model. Quat Res 37:221–233 (in Japanese)

    Article  Google Scholar 

  21. Kim K, Kim KR, Kim YG et al (1996) New findings from CREAMS observations: water masses and eddies in the East Sea. J Korean Soc Oceanogr 31:155–163

    Google Scholar 

  22. Gamo T (1999) Global warming may have slowed down the deep conveyer belt of a marginal sea of the northwestern Pacific: Japan Sea. Geophys Res Lett 26:3137–3140

    Article  Google Scholar 

  23. Yokoyama Y, Kido Y, Tada R et al (2007) Japan Sea oxygen isotope stratigraphy and global sea-level changes for the last 50,000 years recorded in sediment cores from the Oki Ridge. Palaeogeogr Palaeoclimatol Paleoecol 247:5–17

    Article  Google Scholar 

  24. Kumamoto Y, Yoneda M, Shibata Y et al (1998) Direct observation of the rapid turnover of the Japan Sea bottom water by means of AMS radiocarbon measurement. Geophys Res Lett 25:651–654

    Article  Google Scholar 

  25. Isobe A (1999) On the origin of the Tsushima warm current and it seasonality. Cont Shelf Res 19:117–133

    Article  Google Scholar 

  26. Bahk JJ, Chough SK, Han SJ (2000) Origins and paleoceanographic significance of laminated muds from the Ulleung Basin, East Sea (Sea of Japan). Mar Geol 162:459–477

    Article  Google Scholar 

  27. Tada R, Irino T, Koizumi I (1999) Land-ocean linkages over orbital and millennial timescales recorded in late Quaternary sediments of the Japan Sea. Paleoceanography 14:236–247

    Article  Google Scholar 

  28. Yao ZQ, Liu YG, Shi XF et al (2012) Paleoenvironmental changes in the East/Japan Sea during the last 48 ka: indications from high-resolution X-ray fluorescence core scanning. J Quat Sci 27:932–940

    Article  Google Scholar 

  29. Liu YG, Sha LB, Shi XF et al (2010) Depositional environment in the southern Ulleung Basin, East Sea (Sea of Japan), during the last 48,000 years. Acta Oceanol Sin 29:52–64

    Article  Google Scholar 

  30. Xing L, Zhao MX, Zhang HL et al (2008) Biomarker reconstruction of phytoplankton productivity and community structure changes in the middle Okinawa Trough during the last 15 ka. Chin Sci Bull 53:2552–2559

    Article  Google Scholar 

  31. Xing L, Zhang RP, Liu YG et al (2011) Biomarker records of phytoplankton productivity and community structure changes in the Japan Sea over the last 166 kyr. Quat Sci Rev 30:2666–2675

    Article  Google Scholar 

  32. Sikes EL, Sicre MA (2002) Relationship of the tetra-unsaturated C37 alkenone to salinity and temperature: implications for paleoproxy applications. Geochem Geophys Geosyst. doi:10.1029/2002GC000345

  33. Harada N, Shin KH, Murata A et al (2003) Characteristics of alkenones synthesized by a bloom of Emiliania huxleyi in the Bering Sea. Geochim Cosmochim Acta 67:1507–1519

    Article  Google Scholar 

  34. Bendle J, Rosell-Mele A, Ziveri P (2005) Variability of unusual distribution of alkenones in the surface waters of the Nordic seas. Paleoceanography 20:1830. doi:10.1029/2004PA001025

    Article  Google Scholar 

  35. Petit JR, Jouzel J, Raynaud D et al (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    Article  Google Scholar 

  36. Zhao MX, Huang CY, Wang CC et al (2006) A millennial-scale U K’37 sea-surface temperature record from the South China Sea (8°N) over the last 150 kyr: monsoon and sea-level influence. Palaeogeogr Palaeoclimatol Paleoecol 236:39–55

    Article  Google Scholar 

  37. Nakagawa T, Kitagawa H, Yasuda Y et al (2003) Yangtze River Civilization Program Members. Asynchronous climate changes in the north Atlantic and Japan during the last termination. Science 299:688–691

    Article  Google Scholar 

  38. Itaki T, Komatsu N, Motoyama I (2007) Orbital- and millennial-scale changes of radiolarian assemblages during the last 220 kyrs in the Japan Sea. Palaeogeogr Palaeoclimatol Paleoecol 247:115–130

    Article  Google Scholar 

  39. Koizumi I, Tada R, Narita H et al (2006) Paleoceanographic history around the Tsugaru Strait between the Japan Sea and the Northwest Pacific Ocean since 30 cal kyr BP. Palaeogeogr Palaeoclimatol Paleoecol 232:36–52

    Article  Google Scholar 

  40. Khim BK, Ikehara K, Bahk JJ, Irino T (2008) Increased negative anomalies of sedimentary organic matter δ 13C and δ 15N values in the East Sea (Sea of Japan) during the full glaciation of the late Quaternary. Quat Int 7:25–35

    Article  Google Scholar 

  41. Minoura K, Hoshino K, Nakamura T et al (1997) Late Pleistocene-Holocene paleoproductivity circulation in the Japan Sea: sea-level control on δ 13C and δ 15N records of sediment organic material. Palaeogeogr Palaeoclimatol Paleoecol 135:41–50

    Article  Google Scholar 

  42. Irino T, Tada R (2002) High-resolution reconstruction of variation in Aeolian dust (Kosa) deposition at ODP site 797, the Japan Sea, during the last 200 ka. Global Planet Change 35:143–156

    Google Scholar 

  43. Zou JJ, Shi XF, Liu YG et al (2012) Reconstruction of environmental changes using a multi-proxy approach in the Ulleung Basin (Sea of Japan) over the last 48 ka. J Quat Sci 27:891–900

    Article  Google Scholar 

  44. Berger AL (1978) Long-term variations of caloric insolation resulting from the Earth’s orbital elements. Quat Res 9:139–167

    Article  Google Scholar 

  45. Sun YB, Clemens SC, An ZS et al (2006) Astronomical timescale and palaeoclimatic implication of stacked 3.6 Myr monsoon records from the Chinese Loess Plateau. Quat Sci Rev 25:33–48

    Article  Google Scholar 

  46. Wang YJ, Cheng H, Edwards RL et al (2008) Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451:1090–1093

    Article  Google Scholar 

  47. Miller KG, Kominz MA, Browning JV et al (2005) The Phanerozoic record of global sea level change. Science 310:1293–1298

    Article  Google Scholar 

  48. Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18O records. Paleoceanography. doi:10.1029/2004PA001071

    Google Scholar 

  49. Shimada T, Kawamura H (2006) Satellite observations of sea-surface temperature and sea-surface wind coupling in the Japan Sea. J Geophys Res. doi:10.1029/2005JC003345

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (41076038, 40710069004, 40606016 and 41006036), and the Project of Global Change and Air-Sea Interaction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanguang Liu.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Chen, J., Chen, J. et al. Variations of alkenone temperature in the Sea of Japan during the last 170 ka and its paleoceanographic implications. Chin. Sci. Bull. 59, 4498–4509 (2014). https://doi.org/10.1007/s11434-014-0367-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0367-6

Keywords

Navigation