Skip to main content
Log in

Three-dimensionally macroporous graphene-supported Fe3O4 composite as anode material for Li-ion batteries with long cycling life and ultrahigh rate capability

  • Article
  • Materials Science
  • Published:
Chinese Science Bulletin

Abstract

Fe3O4 is an attractive conversion reaction-based anode material with high theoretical capacity (928 mA h g−1). However, the poor cycling and rate performance hinder its applications in Li-ion batteries. In this work, we report an effective strategy to synthesize three-dimensionally macroporous graphene-supported Fe3O4 hybrid composite. Benefiting from advantage of the special structure, the hybrid composite exhibits excellent Li+ storage performance, delivering a high reversible capacity of 980 mA h g−1 at the current density of 4 A g−1 even after 470 cycles and ultrahigh rate capability (293 mA h g−1 even at current density of 20 A g−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Choi NS, Chen Z, Freunberger SA et al (2012) Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed 51:9994–10024

    Article  Google Scholar 

  2. Park OK, Cho Y, Lee S et al (2011) Who will drive electric vehicles, olivine or spinel? Energy Environ Sci 4:1621–1633

    Article  Google Scholar 

  3. Wei GZ, Lu X, Ke FS et al (2010) Crystal habit-tuned nanoplate material of Li[Li1/3−2x/3Ni x Mn2/3−x/3]O2 for high-rate performance lithium-ion batteries. Adv Mater 22:4364–4367

    Article  Google Scholar 

  4. Wang ZL, Xu D, Wang HG et al (2013) In-situ fabrication of porous graphene electrodes for high-performance energy storage. ACS Nano 7:2422–2430

    Article  Google Scholar 

  5. Ma DL, Cao ZY, Wang HG et al (2012) Three-dimensionally ordered macroporous FeF3 and its in situ homogenouspolymerization coating for high energy and power density lithium ion batteries. Energy Environ Sci 5:8538–8542

    Article  Google Scholar 

  6. Wang HG, Ma DL, Huang Y et al (2012) Electrospun V2O5 nanostructures with controllable morphology as high-performance cathode materials for lithium-ion batteries. Chem Eur J 18:8987–8992

    Article  Google Scholar 

  7. Zhang L, Wu HB, Madhavi S et al (2012) Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. J Am Chem Soc 134:17388–17391

    Article  Google Scholar 

  8. Ma R, Liang J, Liu X et al (2012) General insights into structural evolution of layered double hydroxide: underlying aspects in topochemical transformation from brucite to layered double hydroxide. J Am Chem Soc 134:19915–19921

    Article  Google Scholar 

  9. Xue DJ, Xin S, Yan Y et al (2012) Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks. J Am Chem Soc 134:2512–2515

    Google Scholar 

  10. Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946

    Article  Google Scholar 

  11. Lee S, Cho Y, Song HK et al (2012) Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries. Angew Chem Int Ed 51:8748–8752

    Article  Google Scholar 

  12. Zhang WM, Wu XL, Hu JS et al (2008) Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv Funct Mater 18:3941–3946

    Article  Google Scholar 

  13. Muraliganth T, Vadivel MA, Manthiram A (2009) Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high performance anode in lithium ion batteries. Chem Commun 47:7360–7362

    Article  Google Scholar 

  14. Liu JZ, Ni JF, Zhao Y et al (2013) Grapecluster-like Fe3O4@C/CNT nanostructures with stable Li-storage capability. J Mater Chem A 1:12879–12884

    Article  Google Scholar 

  15. Liu H, Wang G, Wang J et al (2008) Magnetite/carbon core-shell nanorods as anode materials for lithium-ion batteries. Electrochem Commun 10:1879–1882

    Article  Google Scholar 

  16. Zhi L, Hu YS, Hamaoui BE et al (2008) Precursor-controlled formation of novel carbon/metal and carbon/metal oxide nanocomposites. Adv Mater 20:1727–1731

    Article  Google Scholar 

  17. Reddy MV, Yu T, Sow CH et al (2007) α-Fe2O3 nanoflakes as an anode material for Li-ion batteries. Adv Funct Mater 17:2792–2799

    Article  Google Scholar 

  18. Lou XW, Wang Y, Yuan C et al (2006) Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv Mater 18:2325–2329

    Article  Google Scholar 

  19. Huang Y, Huang XL, Lian JS et al (2012) Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage. J Mater Chem 22:2844–2847

    Article  Google Scholar 

  20. Huang XL, Chai J, Jiang T et al (2012) Self-assembled large-area Co(OH)2 nanosheets/ionic liquid modified graphene heterostructures toward enhanced energy storage. J Mater Chem 22:3404–3410

    Article  Google Scholar 

  21. Wang ZL, Xu D, Wang LM et al (2012) Facile and low-cost synthesis of large-area pure V2O5 nanosheets for high-capacity and high-rate lithium storage over a wide temperature range. ChemPlusChem 77:124–128

    Article  Google Scholar 

  22. Wang HG, Ma DL, Huang XL et al (2012) General and controllable synthesis strategy of metal oxide/TiO2 hierarchical heterostructures with improved lithium-ion battery performance. Sci Rep 2:701–709

    Google Scholar 

  23. Li YG, Tan B, Wu YY (2008) Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett 8:265–270

    Article  Google Scholar 

  24. Liu J, Li Y, Fan H et al (2010) Iron oxide-based nanotube arrays derived from sacrificial template-accelerated hydrolysis: large-area design and reversible lithium storage. Chem Mater 22:212–217

    Article  Google Scholar 

  25. Oumellal Y, Delpuech N, Mazouzi D et al (2011) The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries. J Mater Chem 21:6201–6208

    Article  Google Scholar 

  26. Chang K, Chen W, Ma L et al (2011) Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries. J Mater Chem 21:6251–6257

    Article  Google Scholar 

  27. Wang S, Lu Z, Wang D et al (2011) Porous monodisperse V2O5 microspheres as cathode materials for lithium-ion batteries. J Mater Chem 21:6365–6369

    Article  Google Scholar 

  28. Ma Y, Garofalini SH (2012) Atomistic insights into the conversion reaction in iron fluoride: a dynamically adaptive force field approach. J Am Chem Soc 134:8205–8211

    Article  Google Scholar 

  29. Reddy MA, Breitung B, Chakravadhanula VSK et al (2013) CF x derived carbon-FeF2 nanocomposites for reversible lithium storage. Adv Energy Mater 3:308–313

    Article  Google Scholar 

  30. Park MH, Cho Y, Kim K et al (2011) Germanium nanotubes prepared by using the Kirkendall effect as anodes for high-rate lithium batteries. Angew Chem Int Ed 50:9647–9650

    Article  Google Scholar 

  31. Seng KH, Park MH, Guo ZP et al (2012) Self-assembled germanium/carbon nanostructures as high-power anode material for the lithium-ion battery. Angew Chem Int Ed 51:5657–5661

    Article  Google Scholar 

  32. Gong Z, Yang Y (2011) Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy Environ Sci 4:3223–3242

    Article  Google Scholar 

  33. Von HR, Lorrmann H, Möller KC et al (2012) Electrospun LiFe1−y Mn y PO4/C nanofiber composites as self-supporting cathodes in Li-ion batteries. Adv Energy Mater 2:553–559

    Article  Google Scholar 

  34. Zhao X, Hayner CM, Kung MC et al (2011) In-plane vacancy-enabled high-power Si-graphene composite electrode for lithium-ion batteries. Adv Energy Mater 1:1079–1084

    Article  Google Scholar 

  35. Fan X, Peng W, Li Y et al (2008) Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater 20:4490–4493

    Article  Google Scholar 

  36. Wang ZL, Xu D, Huang Y et al (2012) Facile, mild and fast thermal-decomposition reduction of graphene oxide in air and its application in high-performance lithium batteries. Chem Commun 48:976–978

    Article  Google Scholar 

  37. Shin HJ, Kim KK, Benayad A et al (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19:1987–1992

    Article  Google Scholar 

  38. Zhou YG, Chen JJ, Wang FB et al (2010) A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells. Chem Commun 46:5951–5953

    Article  Google Scholar 

  39. Wang HG, Wu Z, Meng FL et al (2013) Nitrogen-doped porous carbon nanosheets as low-cost and high-performance anode material for sodium-ion batteries. ChemSusChem 6:56–62

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program of “One Hundred Talents People” of the Chinese Academy of Sciences, the National Basic Research Program of China (2012CB215500), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (20921002), the National Natural Science Foundation of China (21101147), and the Jilin Provincial Science and Technology Development Program (20100102, 20116008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanyi Cao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1141 kb)

About this article

Cite this article

Ma, D., Yuan, S. & Cao, Z. Three-dimensionally macroporous graphene-supported Fe3O4 composite as anode material for Li-ion batteries with long cycling life and ultrahigh rate capability. Chin. Sci. Bull. 59, 2017–2023 (2014). https://doi.org/10.1007/s11434-014-0307-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0307-5

Keywords

Navigation