Skip to main content
Log in

Image and data processing of digital zenith telescope (DZT-1) of China

  • Article
  • Astronomy
  • Published:
Chinese Science Bulletin

Abstract

The first digital zenith telescope prototype (DZT-1) of China was successfully developed by National Astronomical Observatories, Chinese Academy of Sciences and Shandong University of Science and Technology at the end of 2011. Compared with classical astrometric telescopes, DZT-1 has features of small size, high automation, and high accuracy. It can be used to do classical astrometric observations as well as measurement of plumb line variation and deflection of the vertical. So DZT-1 plays a significant role in astronomy and geoscience. Although the measurement principle and method of DZT-1 are somewhat similar to classical photographic zenith tube, there are still many differences. The present paper introduces the principle, method, and procedure for processing DZT-1 star image and data, as well as the application software for astronomical latitude and longitude calculation using DZT-1 observations. The test observations and the observation results are also presented. According to the test observation results, the standard deviation of single observation is about 0.2″–0.3″, and 0.07″–0.08″ in term of a group observations. In conclusion, the data processing software fulfills DZT-1’s demand for data processing, guaranteeing the automation and high accuracy for DZT-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen M, Liu QH, Wu YJ et al (2011) Relative position determination of a lunar rover using the biased differential phase delay of same-beam VLBI. Sci China Phys Mech Astron 54:2284–2295

    Article  Google Scholar 

  2. Huang Y, Hu XG, Zhang XZ et al (2011) Improvement of orbit determination for geostationary satellites with VLBI tracking. Chin Sci Bull 56:2765–2772

    Article  Google Scholar 

  3. Xu MH, Wang GL, Zhao M (2012) Direct estimation of the Solar acceleration using geodetic/astrometric VLBI observations. Sci China Phys Mech Astron 55:329–332

    Article  Google Scholar 

  4. Li PJ, Hu XG, Huang Y et al (2012) Orbit determination for Chang’E-2 lunar probe and evaluation of lunar gravity models. Sci China Phys Mech Astron 55:514–522

    Article  Google Scholar 

  5. Huang Y, Hu XG, Li PJ et al (2012) Precise positioning of the Chang’E-3 lunar lander using a kinematic statistical method. Chin Sci Bull 57:4545–4551

    Article  Google Scholar 

  6. Wang B, Yin ZQ, Han YB (2012) Progress of research on anomalies of astronomical time and latitude observations before earthquake. Chin Sci Bull 57:3547–3555

    Article  Google Scholar 

  7. Li DM, Jin WJ, Xia YF (2006) Astrometric methods. China Science and Technology Press, Beijing (in Chinese)

    Google Scholar 

  8. Zhao M (2006) Essential astrometry. China Science and Technology Press, Beijing (in Chinese)

    Google Scholar 

  9. Ma WZ (1995) Spherical astronomy. Beijing Normal University Publishing Group, Beijing (in Chinese)

    Google Scholar 

  10. Han YB, Tian J (1996) Observational network for studies of variation of the vertical and earthquake in Beijing. Prog Geophys 11:97–102 (in Chinese)

    Google Scholar 

  11. Wang HQ, Han YB, Guo JY et al (2011) Small astronomic instruments for measuring variation of the vertical. In: Proceedings of the 27th Chinese Geophysical Society annual meeting, Press of University of Science and Technology of China, Hefei, 2011. 528 (in Chinese)

  12. Han YB, Wang HQ, Yin ZQ et al (2012) Significance and feasibility to set up test measurement network in Huabei and Xibei regions for variation of the vertical. Prog Geophys 27:1287–1293 (in Chinese)

    Google Scholar 

  13. Hu H, Li ZX, Li H et al (1986) Interannual variations of the vertical at Yunna by astrometry and gravimetry techniques. J Nat Dis 12:25–27 (in Chinese)

    Google Scholar 

  14. Zhang CZ, Xia YF (1986) Astrometry. Higher Education Press, Beijing (in Chinese)

    Google Scholar 

  15. Hirt C (2001) Automatic determination of vertical deflections in real-time by combining GPS and digital zenith camera for solving the GPS-height-problem. In: Proceedings of the 14th International Technical Meeting of The Satellite Division of the Institute of Navigation, Institute of Navigation, Salt Lake City, 2001. 2540–2551

  16. Bürki B, Müller A, Kahle HG. DIADEM: The new digital astronomical deflection measuring system for high-precision measurements of deflections of the vertical at ETH Zurich. In: Proceeding of IAG GGSM 2004, Porto, Portugal, 2004

  17. Gerstbach G, Pichler H (2003) A small CCD zenith camera (ZC-G1) developed for rapid geoid monitoring in difficult projects. Publ Astron Obs Belgrade 75:221–228

    Google Scholar 

  18. Hirt C, Seeber G (2006) High-resolution local gravity field determination at the sub-millimeter level using a digital zenith camera system. In: Tregoning P, Rizos C (eds) Proceedings of dynamic planet. Springer, Berlin Heidelberg, pp 316–321

  19. Hirt C, Seeber G (2008) Accuracy analysis of vertical deflection data observed with the Hannover digital zenith camera system TZK2-D. J Geodesy 82:347–356

    Article  Google Scholar 

  20. Somieski AE (2008) Astrogeodetic Geoid and Isostatic Considerations in the North Aegean Sea, Greece. Dissertation. ETH Zurich

  21. Hirt C, Bürki B (2003) The Digital Zenith Camera - a new high-precision and economic astrogeodetic observation system for real-time measurement of deflections of the vertical. In: Tziavos I (ed) Proceedings of the 3rd meeting of the International Gravity and Geoid Commission of the IAG, Editions Ziti, Thessaloniki, 2003. 161–166

  22. Hirt C, Reese B, Enslin H (2005) On the accuracy of vertical deflection measurements using the high-precision digital zenith camera system TZK2-D. In: Jekeli C, Bastos L, Fernandes J (eds) Proceedings of GGSM 2004 IAG International Symposium. Springer, Berlin Heidelberg, pp 197–201

    Google Scholar 

  23. Bürki B, Somieski AE, Sorber P et al (2007) The digital astronomical deflection measuring system (DIADEM). Swiss National Report on the Geodetic Activities in the years 2003–2007, Swiss Geodetic Commission

  24. Hirt C, Bürki B, Somieski AE et al (2010) Modern determination of vertical deflections using digital zenith cameras. J Survey Eng 136:1–12

    Article  Google Scholar 

  25. Tian LL, Guo JY, Han YB et al (2014) Digital zenith telescope prototype of China (DZT-1). Chin Sci Bull. doi:10.1007/s11434-014-0256-z

    Google Scholar 

  26. Haralick RM, Shapiro LG (1993) Computer and robot vision. Addison Wesley, Massachusetts

    Google Scholar 

  27. Stone RC (1989) A comparison of digital centering algorithms. Astron J 97:1227–1237

    Article  Google Scholar 

  28. Li Z, Peng QY, Han GQ (2009) Comparison of digital centering algorithms based on CCD image. Acta Astronomica Sinica 50:340–348 (in Chinese)

    Google Scholar 

  29. Auer LH, Van Altena WF (1978) Digital image centering. II. Astron J 83:531–537

    Article  Google Scholar 

  30. Peng QY, Han YB, Zhang CL et al (2003) Image-processing techniques in precisely measuring positions of jupiter and its galilean satellites. Astron Astrophys 401:773–779

    Article  Google Scholar 

  31. Peng QY, Vienne A, Lainey V et al (2008) New evidence of precision premium for Galilean satellites from CCD imaging. Planet Space Sci 56:1807–1811

    Article  Google Scholar 

  32. Chiu LTG (1977) Astrometric techniques with a PDS microdensitometer. Astron J 82:842–848

    Article  Google Scholar 

  33. Stetson PB (1979) Photographic stellar photometry with the PDS microdensitometer. Astron J 84:1056–1066

    Article  Google Scholar 

  34. Hog E, Fabricius C, Makarov VV et al (2000) The Tycho-2 catalogue of the 2.5 million brightest stars. Astron Astrophys 355:L27–L30

    Google Scholar 

  35. Kaplan GH, Hughes JA, Seidelmann PK et al (1989) Mean and apparent place computations in the new IAU system. III—Apparent, topocentric, and astrometric places of planets and stars. Astron J 97:1197–1210

    Article  Google Scholar 

  36. Jekeli C (2006) Geometric reference systems in geodesy. Lecture notes of Division of Geodesy and Geospatial Science, School of Earth Science, Ohio State University

  37. Green RM (1985) Spherical astronomy. Cambridge University Press, Cambridge

    Google Scholar 

  38. Hirt C, Kahlmann T (2004) Hochpräzise neigungsmessung mit dem elektronischen pendelneigungssensor HRTM. Zeitschrift für Vermessungswesen 129:266–276 (in German)

    Google Scholar 

  39. Hirt C (2004) Entwicklung und Erprobung eines digitalen Zenitkamerasystems für die hochpräzise Lotabweichungsbestimmung. Doctor Dissertation, University of Hannover (in German)

Download references

Acknowledgments

The authors would like to thank Professor Dongming Li for his careful guidance and help about data processing, and Associate Professor Hongqin Ji for his introduction to data processing of classical photographic zenith tube.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Wang.

About this article

Cite this article

Wang, B., Tian, L., Wang, Z. et al. Image and data processing of digital zenith telescope (DZT-1) of China. Chin. Sci. Bull. 59, 1984–1991 (2014). https://doi.org/10.1007/s11434-014-0277-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0277-7

Keywords

Navigation