Skip to main content
Log in

Application prospects of high-voltage cathode materials in all-solid-state lithium-ion batteries

  • Review
  • Materials Science
  • Published:
Chinese Science Bulletin

Abstract

All-solid-state lithium-ion batteries are lithium-ion batteries with solid-state electrolytes instead of liquid electrolytes. They are hopeful in solving the safety problems of lithium-ion batteries, once their large capacity and long life are achieved, they will have broad application prospects in the field of electric vehicles and large-scale energy storage. The working potential window of solid electrolytes is wider than that of liquid electrolytes, so high-voltage cathode materials could be used in all-solid-state lithium-ion batteries to get higher energy density and larger capacity by elevating the working voltage of the batteries. The spinel LiNi0.5Mn1.5O4 material, layered Li–Ni–Co–Mn–O cathode materials and lithium-rich cathode materials can be expected to be applied to all-solid-state lithium-ion batteries as cathode materials due to their high-voltage platforms. In this review, the electrochemical properties and structures of spinel LiNi0.5Mn1.5O4 material, layered Li–Ni–Co–Mn–O cathode materials and lithium-rich cathode materials are introduced. More attentions are paid on recent research progress of conductivity and interface stability of these materials, in order to improve their compatibility with solid electrolytes as cathode materials in all-solid-state lithium-ion batteries and fully improve the properties of all-solid-state batteries. Finally, the existing problems of their application in all-solid-state lithium-ion batteries are summarized, the main research directions are put forward and their application prospects in all-solid-state lithium-ion batteries are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Takada K (2013) Progress and perspective of solid-state lithium ion batteries. Acta Mater 61:759–770

    Article  Google Scholar 

  2. Hooper A, North JM (1983) The fabrication and performance of all solid-state polymer-based rechargeable lithium cells. Solid State Ionics 9–10:1161–1166

    Article  Google Scholar 

  3. Fabre SD, Guy-Bouyssou D, Bouillon P et al (2012) Charge/discharge simulation of an all-solid-state thin film battery using a one-dimensional model. J Electrochem Soc 159:A104–A115

    Article  Google Scholar 

  4. Schwenzel J, Thangadurai V, Weppner W (2006) Developments of high-voltage all-solid-state thin-film lithium ion batteries. J Power Sources 154:232–238

    Article  Google Scholar 

  5. Hu RZ, Liu H, Zeng MQ et al (2012) Progress on Sn-based thin-film anode materials for lithium-ion batteries. Chin Sci Bull 57:4119–4130

    Article  Google Scholar 

  6. Taracson JM, Armand M (2001) Issues and challenges facing lithium ion batteries. Nature 414:359–367

    Article  Google Scholar 

  7. Yang Y, Gong ZL, Wu XB et al (2012) Recent progress in cathode materials for Li-ion batteries. Chin Sci Bull 57:2570–2586 (in Chinese)

    Google Scholar 

  8. Xia L, Zhu LM, Zhang HY et al (2012) A positive-temperature-coefficient electrode with thermal protection mechanism for rechargeable lithium batteries. Chin Sci Bull 57:4205–4209

    Article  Google Scholar 

  9. Chiu KF (2007) Lithium cobalt oxide thin films deposited at low temperature by ionized magnetron sputtering. Thin Solid Films 515:4614–4618

    Article  Google Scholar 

  10. Ramana CV, Zaghib K, Julien CM (2006) Synthesis, structural and electrochemical properties of pulsed laser deposited Li(Ni, Co)O2 films. J Power Sources 159:1310–1315

    Article  Google Scholar 

  11. Yoon WS, Chung KY, Nam KW et al (2006) Characterization of LiMn2O4-coated LiCoO2 film electrode prepared by electrostatic spray deposition. J Power Sources 163:207–210

    Article  Google Scholar 

  12. Du K, Hu GR (2012) Review of manganese-based solid solution xLi[Li1/3Mn2/3]O2·(1 − x)LiMO2. Chin Sci Bull 57:794–804 (in Chinese)

    Google Scholar 

  13. Yi TF, Xie Y, Zhu YR et al (2013) Structural and thermodynamic stability of Li4Ti5O12 anode material for lithium-ion battery. J Power Sources 222:448–454

    Article  Google Scholar 

  14. Bao LY, Gao W, Su YF et al (2013) Progression of the silicate cathode materials used in lithium ion batteries. Chin Sci Bull 58:575–584

    Article  Google Scholar 

  15. Kim JH, Myung ST, Yoon CS et al (2004) Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd-3m and P4332. Chem Mater 16:906–914

    Article  Google Scholar 

  16. Julien CM, Gendron F, Arndouni A et al (2006) Lattice vibrations of materials for lithium rechargeable batteries. VI: ordered spinels. Mater Sci Eng B 130:41–48

    Article  Google Scholar 

  17. Duncan H, Abu-Lebdeh Y, Davidson IJ (2010) Study of the cathode-electrolyte interface of LiNiMnO synthesized by sol–gel method for Li-ion batteries. J Electrochem Soc 157:A528–A535

    Article  Google Scholar 

  18. Idemoto Y, Sekin H, Ui K et al (2005) Crystal structural change during charge-discharge process of LiNi0.5Mn1.5O4 as cathode material for 5 V class lithium secondary battery. Solid State Ionics 176:299–306

    Article  Google Scholar 

  19. Kim JH, Myung ST, Sun YK (2004) Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary battery. Electrochim Acta 49:219–227

    Article  Google Scholar 

  20. Lu HQ, Wu F, Su YF et al (2011) Preparation of LiNi0.5Mn1.5O4 as 5 V cathode materials for lithium ion battery and diffusion performance of Li+ in the materials. Chem J Chin Univ 32:946–951 (in Chinese)

    Google Scholar 

  21. Liu J, Liu W, Ji S et al (2013) Electrospun spinel LiNi0.5Mn1.5O4 hierarchical nanofibers as 5 V cathode materials for lithium-ion batteries. ChemPlusChem 78:636–641

    Article  Google Scholar 

  22. Zhang X, Cheng F, Yang J et al (2013) LiNi0.5Mn1.5O4 porous nanorods as high-rate and long-life cathodes for Li-ion batteries. Nano Lett 13:2822–2825

    Article  Google Scholar 

  23. Park SB, Eom WS, Cho WI et al (2009) Electrochemical properties of LiNi0.5Mn1.5O4 cathode after Cr doping. J Power Sources 159:679–684

    Article  Google Scholar 

  24. Alcantara R, Jaraba M, Lavela P et al (2005) Synergistic effects of double substitution in LiNi0.5−y Fe y Mn1.5O4. J Electrochem Soc 152:A13–A18

    Article  Google Scholar 

  25. Liu J, Manthiram A (2009) Understanding the improved electroperformances of Fe-substituted 5 V spinel cathode. J Phys Chem C 113:15073–15079

    Article  Google Scholar 

  26. Oh SW, Myung ST, Kang HB et al (2009) Effects of Co doping on Li[Ni0.5Co x Mn1.5−x ]O4 spinel materials for 5 V lithium secondary batteries via co-precipitation. J Power Sources 189:752–756

    Article  Google Scholar 

  27. Locati C, Lafont U, Simonin L et al (2007) Mg-doped LiNi0.5Mn1.5O4 spinel for cathode materials. J Power Sources 174:847–851

    Article  Google Scholar 

  28. Kim JH, Myung ST, Yoon CS et al (2004) Effect of Ti substitution for Mn on the structure of LiNi0.5Mn1.5−x Ti x O4 and their electrochemical properties as lithium insertion material. J Electrochem Soc 151:A1911–A1918

    Article  Google Scholar 

  29. Wang H, Xia H, Lai MO et al (2009) Enhancements of rate capability and cyclic performance of spinel LiNi0.5Mn1.5O4 by trace Ru-doping. Electrochem Commun 11:1539–1542

    Article  Google Scholar 

  30. Oh SW, Park SH, Kim JH et al (2006) Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel material by fluorine substitution. J Power Sources 157:464–470

    Article  Google Scholar 

  31. Sun YK, Oh SW, Yoon CS et al (2006) Effect of sulfur and nickel doping on morphology and electrochemical performance of LiNi0.5Mn1.5O4−x S x spinel material in 3 V region. J Power Sources 161:19–26

    Article  Google Scholar 

  32. Huang YY, Zeng XL, Zhou C et al (2013) Electrochemical performance and thermal stability of GaF3-coated LiNi0.5Mn1.5O4 as 5 V cathode materials for lithium ion batteries. J Mater Sci 48:625–635

    Article  Google Scholar 

  33. Fan YK, Wang JM, Tang Z et al (2007) Effects of the nanostructured SiO2 coating on the performance of LiNi0.5Mn1.5O4 cathode materials for high-voltage Li-ion batteries. Electrochim Acta 52:3870–3875

    Article  Google Scholar 

  34. Alcantara R, Jaraba M, Lavela P et al (2004) X-ray diffraction and electrochemical impedance spectroscopy study of zinc coated LiNi0.5Mn1.5O4 electrodes. J Electroanal Chem 566:187–192

    Article  Google Scholar 

  35. Wu HM, Belharouak I, Abouimrane A et al (2010) Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO2 for lithium-ion batteries. J Power Sources 195:2909–2913

    Article  Google Scholar 

  36. Noguchi T, Yamazaki I, Numata T et al (2007) Effect of Bi oxide surface treatment on 5 V spinel LiNi0.5Mn1.5−x Ti x O4. J Power Sources 174:359–365

    Article  Google Scholar 

  37. Kang HB, Myung ST, Amine K et al (2010) Improved electrochemical properties of BiOF-coated 5 V spinel Li[Ni0.5Mn1.5]O4 for rechargeable lithium batteries. J Power Sources 195:2023–2028

    Article  Google Scholar 

  38. Zhu YR, Yi TF, Zhu RS et al (2013) Increased cycling stability of Li4Ti5O12-coated LiNi0.5Mn1.5O4 as cathode material for lithium-ion batteries. Ceram Int 39:3087–3094

    Article  Google Scholar 

  39. Du G, NuLi Y, Yang J et al (2008) Fluorine-doped LiNi0.5Mn1.5O4 for 5 V cathode materials of lithium-ion battery. Mater Res Bull 43:3607–3613

    Article  Google Scholar 

  40. Keigo H, Kazuomi Y, Masashi K et al (2012) Fabrication of LiNi0.5Mn1.5O4 thin film cathode by PVP sol–gel process and its application of all-solid-state lithium ion batteries using Li1+x Al x Ti2−x (PO4)3 solid electrolyte. Solid State Ion 209–210:30–35

    Google Scholar 

  41. Liu ZL, Yu AS, Lee JY (1999) Synthesis and characterization of LiNi1−xy Co x Mn y O2 as the cathode materials of secondary lithium batteries. J Power Sources 81:416–419

    Article  Google Scholar 

  42. Mizushima K, Jones PC, Wiseman PJ et al (1980) Li x CoO2 (0 < x<1): a new cathode material for batteries of high energy density. Mater Res Bull 15:783–789

    Article  Google Scholar 

  43. Chen ZH, Dahn JR (2004) Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V. Electrochim Acta 49:1079–1090

    Article  Google Scholar 

  44. Ohzuku T, Ueda A, Nagayama M (1993) Electrochemistry and structural chemistry of LiNiO2 (R3over-BAR-m) for 4 volt secondary lithium cells. J Electrochem Soc 140:1862–1870

    Article  Google Scholar 

  45. Armstrong AR, Paterson AJ, Dupre N et al (2007) Structural evolution of layered Li x Mn y O2: combined neutron, NMR, and electrochemical study. Chem Mater 19:1016–1023

    Article  Google Scholar 

  46. Koyama Y, Tanaka I, Adachi H et al (2003) Crystal and electronic structures of superstructural Li1−x [Co1/3Ni1/3Mn1/3]O2 (0 ≤ x ≤ 1). J Power Sources 119–121:644–648

    Article  Google Scholar 

  47. Bao LY, Che HQ, Hu DZ et al (2013) Methods for promoting electrochemical properties of LiNi1/3Co1/3Mn1/3O2 for lithium-ion batteries. Chin Sci Bull 58:1869–1875

    Article  Google Scholar 

  48. Kim GH, Myung ST, Kim HS et al (2006) Synthesis of spherical Li[Ni1/3−z Co1/3−z Mn1/3−z Mg z ]O2 as positive electrode material for lithium-ion battery. Electrochim Acta 51:2447–2453

    Article  Google Scholar 

  49. Wu F, Wang M, Su YF et al (2010) A novel layered material of LiNi0.32Mn0.33Co0.33Al0.01O2 for advanced lithium-ion batteries. J Power Sources 195:2900–2904

    Article  Google Scholar 

  50. Chen YH, Chen RZ, Tang ZY et al (2009) Synthesis and characterization of Zn-doped LiCo0.3Ni0.4−x Mn0.3Zn x O2 cathode materials for lithium-ion batteries. J Alloy Compd 476:539–542

    Article  Google Scholar 

  51. Wang LQ, Jiao LF, Yuan HT et al (2006) Synthesis and electrochemical properties of Mo-doped Li[Ni1/3Mn1/3Co1/3]O2 cathode material for Li-ion battery. J Power Sources 162:1367–1372

    Article  Google Scholar 

  52. Zhang YJ, Xia SB, Zhang YN et al (2012) Ce-doped LiNi1/3Co(1/3−x/3)Mn1/3Ce x/3O2 cathode materials for use in lithium ion batteries. Chin Sci Bull 57:4181–4187

    Article  Google Scholar 

  53. Riley LA, Van Ana S, Cavanagh AS et al (2011) Electrochemical effects of ALD surface modification on combustion synthesized LiNi1/3Co1/3Mn1/3 O2as layered cathode material. J Power Sources 196:3317–3324

    Article  Google Scholar 

  54. Li J, Zhang Q, Liu C et al (2009) ZrO2 coating of LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. Ionics 15:493–496

    Article  Google Scholar 

  55. Hu SK, Cheng GH, Cheng MY et al (2009) Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. J Power Sources 188:564–569

    Article  Google Scholar 

  56. Wu F, Wang M, Su YF et al (2009) Surface of LiNi1/3Co1/3Mn1/3O2 modified by CeO2-coating. Electrochim Acta 54:6803–6807

    Article  Google Scholar 

  57. Cho J, Kim TJ, Kim J et al (2004) Synthesis, thermal and electrochemical properties of AlPO4-coated LiNi0.8Co0.1Mn0.1O2 cathode materials for a Li-ion cell. J Electrochem Soc 151:A1899–A1904

    Article  Google Scholar 

  58. Jiang SB, Kang SH, Amine K et al (2005) Synthesis and improved electrochemical performance of Al(OH)3-coated Li[Ni1/3Mn1/3Co1/3]O2 cathode materials at elevated temperature. Electrochim Acta 50:4168–4173

    Article  Google Scholar 

  59. Shi SJ, Tu JP, Tang YY et al (2013) Enhanced electrochemical performance of LiF-modified LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. J Power Sources 225:338–346

    Article  Google Scholar 

  60. Liu T, Zhao SX, Wang KZ et al (2012) CuO-coated Li[Ni0.5Co0.2Mn0.3]O2 cathode material with improved cycling performance at high rates. Electrochim Acta 85:605–611

    Article  Google Scholar 

  61. Shaju KM, Rao GVS, Chowdari BVR et al (2002) Influnce of Li-ion kinetics in the cathodic performance of layered Li(Ni1/3Co1/3Mn1/3)O2. Electrochim Acta 48:145–151

    Article  Google Scholar 

  62. Yabuuchi N, Ohzuku T (2003) Novel lithium insertion material of LiNi1/3Co1/3Mn1/3O2 for advanced lithium ion batteries. J Power Sources 119–121:171–174

    Article  Google Scholar 

  63. Zhang W, Liu HX, Hu C et al (2008) Preparation of layered oxide Li(Ni1/3Co1/3Mn1/3)O2 via the sol–gel process. Rare Met 27:158–164

    Article  Google Scholar 

  64. Cho Y, Oh P, Cho J (2013) A new type of protective surface layer for high-capacity Ni-based cathode materials: nanoscaled pillaring layer. Nano Lett 13:1145–1152

    Article  Google Scholar 

  65. Sun YK, Kim DH, Jung HG et al (2010) High-voltage performance of concentration-gradient Li[Ni0.67Co0.15Mn0.18]O2 cathode material for lithium-ion batteries. Electrochim Acta 55:8621–8627

    Article  Google Scholar 

  66. Sun YK, Chen ZH, Noh HJ et al (2012) Nanostructured high-energy cathode materials for advanced lithium batteries. Nat Mater 11:942–947

    Article  Google Scholar 

  67. Hirokazu K, Akitoshi H, Kiyoharu T et al (2010) Electrochemical performance of all-solid-state lithium secondary batteries with Li–Ni–Co–Mn oxide positive electrodes. Electrochim Acta 55:8821–8828

    Article  Google Scholar 

  68. Lu ZH, Macneil DD, Dahn JR (2001) Layered cathode materials Li[Ni x Li(1/3−2x/3)Mn(2/3−x/3)]O2 for lithium-ion batteries. Electrochem Solid ST 4:A191–A194

    Article  Google Scholar 

  69. Mori D, Sakaebe H, Shikano M et al (2011) Synthesis, phase relation and electrical and electrochemical properties of ruthenium-substituted Li2MnO3 as a novel cathode material. J Power Sources 196:6934–6938

    Article  Google Scholar 

  70. Wu F, Li N, An R et al (2012) The review of lithium-rich cathode materials based on Li2MnO3. Trans Beijing Inst Technol 32:1–11 (in Chinese)

    Google Scholar 

  71. Armstrong AR, Robertson AD, Bruce PG (2005) Overcharging manganese oxides: extracting lithium beyond Mn4+. J Power Sources 146:275–280

    Article  Google Scholar 

  72. Tran N, Croguennee L, Delmas C et al (2008) Mechanisms associated with the “Plateau” observed at high voltage for the overlithiated Lil. 2(Ni0.425Mn0.425Co0.15)0.88O2 system. Chem Mater 20:4815–4825

    Article  Google Scholar 

  73. La Mantia F, Rosciano F, Tran N et al (2008) Direct evidence of oxygen evolution from Lil+x (Nil/3Mnl/3Col/3)l−x O2 at high potentials. J Appl Electrochem 38:893–896

    Article  Google Scholar 

  74. Armstrong AR, Holzapfel M, Novak P et al (2006) Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc 128:8694–8698

    Article  Google Scholar 

  75. Li J, Klopsch R, Stan MC et al (2011) Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with improved rate capability. J Power Sources 196:4821–4825

    Article  Google Scholar 

  76. Wu F, Lu HQ, Su YF et al (2010) Preparation and electrochemical performance of Li-rich layered cathode material, Li[Ni0.2Li0.2Mn0.6]O2 for lithium-ion batteries. J Appl Electrochem 40:783–789

    Article  Google Scholar 

  77. Song CH, Stephan AM, Lee YS et al (2007) Cycling performance of Li[Li2/10Ni1/10Co2/10Mn5/10]O2 synthesized by sol–gel route. Mater Chem Phys 101:63–68

    Article  Google Scholar 

  78. Kim JH, Park CW, Sun YK (2003) Synthesis and electrochemical behavior of Li[Li0.1Ni0.35−x/2Co x Mn0.55−x/2]O2 cathode materials. Solid State Ionics 164:43–49

    Article  Google Scholar 

  79. Jiao LF, Zhang M, Yuan HT et al (2007) Effect of Cr doping on the structural, electrochemical properties of Li[Li0.2Ni0.2−x/2Mn0.6−x/2Cr x ]O x (x = 0, 0.02, 0.04, 0.06, 0.08) as cathode materials for lithium secondary batteries. J Power Sources 167:178–184

    Article  Google Scholar 

  80. Park JH, Lim J, Yoon J et al (2012) The effects of Mo doping on 0.3Li[Li0.33Mn0.67]O2·0.7[Ni0.5Co0.2Mn0.3]O2 cathode material. Dalton Trans 41:3053–3059

    Article  Google Scholar 

  81. Wu Y, Manthiram A (2009) Effect of surface modifications on the layered solid solution cathodes (1 − z)Li[Li1/3Mn2/3]O2 − (z)Li[Mn0.5−y Ni0.5−y Co2y ]O2. Solid State Ionics 180:50–56

    Article  Google Scholar 

  82. Park MS, Lee JW, Choi W et al (2010) On the surface modifications of high-voltage oxide cathodes for lithium-ion batteries: new insight and significant safety improvement. J Mater Chem 20:7208–7213

    Article  Google Scholar 

  83. Wu F, Li N, Su YF et al (2013) Spinel/layered heterostructured cathode material for high-capacity and high-rate Li-ion batteries. Adv Mater 25:3722–3726

    Article  Google Scholar 

  84. Kang YJ, Kim JH, Lee SW et al (2005) The effect of Al(OH)3 coating on the Li[Li0.2Ni0.2Mn0.6]O2 cathode material for lithium secondary battery. Electrochim Acta 50:4784–4791

    Article  Google Scholar 

  85. Li GR, Feng X, Ding Y et al (2012) AlF3-coated Li(Li0.17Ni0.25Mn0.58)O2 as cathode material for Li-ion batteries. Electrochim Acta 78:308–315

    Article  Google Scholar 

  86. Liu XY, Liu JL, Huang T et al (2013) CaF2-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries. Electrochim Acta 109:52–58

    Article  Google Scholar 

  87. Ryu KS, Lee SH, Koo BK et al (2008) Effect of Co2(PO4)3 coating on Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material for lithium rechargeable batteries. J Power Sources 184:276–283

    Article  Google Scholar 

  88. Wu CR, Fang XP, Guo XW et al (2013) Surface modification of Li1.2Mn0.54Co0.13Ni0.13O2 with conducting polypyrrole. J Power Sources 231:44–49

    Article  Google Scholar 

  89. Gao J, Kim J, Manthiram A (2009) High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2–V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries. Electrochem Commun 11:84–86

    Article  Google Scholar 

  90. Gao J, Manthiram A (2009) Eliminating the irreversible capacity loss of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode by blending with other lithium insertion hosts. J Power Sources 191:644–647

    Article  Google Scholar 

  91. Wang ZY, Liu EZ, He CN et al (2013) Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries. J Power Sources 236:25–32

    Article  Google Scholar 

  92. Gallagher KG, Kang SH, Park SU et al (2011) xLi2MnO3·(1 − x)LiMO2 blended with LiFePO4 to achieve high energy density and pulse power capability. J Power Sources 196:9702–9707

    Article  Google Scholar 

  93. Qiao QQ, Zhang HZ, Li GR et al (2013) Surface modification of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide with Li–Mn–PO4 as cathode for lithium-ion batteries. J Mater Chem A 1:5262–5268

    Article  Google Scholar 

  94. Kim MG, Jo M, Hong YS et al (2009) Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2 nanowires for high performance lithium battery cathode. Chem Commun 2:218–220

    Article  Google Scholar 

  95. Park SH, Sun YK (2003) Synthesis and electrochemical properties of layered Li[Li0.15Ni(0.275−x/2)Al x Mn(0.575−x/2)]O2 prepared by sol–gel method. J Power Sources 119–121:161–165

    Article  Google Scholar 

  96. Amine K, Chen ZH, Kang SH (2007) Impacts of fluorine on the electrochemical properties of Li[Ni0.5Mn0.5]O2 and Li[Li0.2Ni0.15Co0.1Mn0.55]O2. J Fluorine Chem 128:263–268

    Article  Google Scholar 

  97. He W, Yuan DD, Qian JF et al (2013) Enhanced high-rate capacity and cycling stability of Na-stabilized layered Li1.2[Co0.13Ni0.13Mn0.54]O2 cathode material. J Mater Chem A 1:11397–11403

    Article  Google Scholar 

  98. Gu M, Belharouak I, Zheng JM et al (2013) Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 7:760–767

    Article  Google Scholar 

  99. Mahantly D, Kalnaus S, Meisner RA et al (2013) Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction. J Power Sources 229:239–248

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2009CB220100), the National Natural Science Foundation of China (51102018, 21103011), the National High Technology Research and Development Program of China (2011AA11A235, SQ2010AA1123116001) and the Science and Technology Project of State Grid Corporation (DG71-13-033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuefeng Su.

About this article

Cite this article

Tian, J., Jin, Y., Guan, Y. et al. Application prospects of high-voltage cathode materials in all-solid-state lithium-ion batteries. Chin. Sci. Bull. 59, 1950–1963 (2014). https://doi.org/10.1007/s11434-014-0212-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0212-y

Keywords

Navigation