Skip to main content
Log in

Akt–Oct4 regulatory circuit in pluripotent stem cells

  • Invited Review
  • Cell Biology
  • Published:
Chinese Science Bulletin

Abstract

Oct4 is mainly expressed in embryonic stem cells (ESCs), germline stem cells, and embryonal carcinoma cells (ECCs) and plays an indispensable role in maintaining the pluripotency and self-renewal of these pluripotent stem cells. Akt serine/threonine kinase, a well-established anti-apoptosis and cell survival factor, has also been implicated as an important regulator of stemness. Emerging evidence indicated that Oct4 is reciprocally connected to Akt via a number of routes, and moreover, a direct interaction between Oct4 and Akt has recently been revealed. These components collectively form the Akt–Oct4 regulatory circuit. In this review, we summarize our current knowledge about the Akt–Oct4 regulatory circuit in ESCs and discuss its alterations in ECCs that may underlie the tumorigenesis of pluripotent stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ng HH, Surani MA (2011) The transcriptional and signalling networks of pluripotency. Nat Cell Biol 13:490–496

    Article  Google Scholar 

  2. Jung M, Peterson H, Chavez L et al (2010) A data integration approach to mapping OCT4 gene regulatory networks operative in embryonic stem cells and embryonal carcinoma cells. PLoS ONE 5:e10709

    Article  Google Scholar 

  3. Wobus AM, Boheler KR (2005) Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev 85:635–678

    Article  Google Scholar 

  4. Silvan U, Diez-Torre A, Arluzea J et al (2009) Hypoxia and pluripotency in embryonic and embryonal carcinoma stem cell biology. Differentiation 78:159–168

    Article  Google Scholar 

  5. Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24:372–376

    Article  Google Scholar 

  6. Rodda DJ, Chew JL, Lim LH et al (2005) Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 280:24731–24737

    Article  Google Scholar 

  7. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  Google Scholar 

  8. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274

    Article  Google Scholar 

  9. Martelli AM, Evangelisti C, Follo MY et al (2011) Targeting the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in cancer stem cells. Curr Med Chem 18:2715–2726

    Article  Google Scholar 

  10. Watanabe S, Umehara H, Murayama K et al (2006) Activation of Akt signaling is sufficient to maintain pluripotency in mouse and primate embryonic stem cells. Oncogene 25:2697–2707

    Article  Google Scholar 

  11. Cross DA, Alessi DR, Cohen P et al (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789

    Article  Google Scholar 

  12. Jope RS, Johnson GV (2004) The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29:95–102

    Article  Google Scholar 

  13. Kimelman D, Xu W (2006) Beta-catenin destruction complex: insights and questions from a structural perspective. Oncogene 25:7482–7491

    Article  Google Scholar 

  14. Moon RT, Bowerman B, Boutros M et al (2002) The promise and perils of Wnt signaling through beta-catenin. Science 296:1644–1646

    Article  Google Scholar 

  15. Yan D, Avtanski D, Saxena NK et al (2012) Leptin-induced epithelial-mesenchymal transition in breast cancer cells requires beta-catenin activation via Akt/GSK3β and MTA1/Wnt1 protein-dependent pathways. J Biol Chem 287:8598–8612

    Article  Google Scholar 

  16. Sineva GS, Pospelov VA (2010) Inhibition of GSK3β enhances both adhesive and signalling activities of β-catenin in mouse embryonic stem cells. Biol Cell 102:549–564

    Article  Google Scholar 

  17. Doble BW, Patel S, Wood GA et al (2007) Functional redundancy of GSK-3alpha and GSK-3beta in Wnt/beta-catenin signaling shown by using an allelic series of embryonic stem cell lines. Dev Cell 12:957–971

    Article  Google Scholar 

  18. Li J, Li J, Chen B (2011) Oct4 was a novel target of Wnt signaling pathway. Mol Cell Biochem 362:233–240

    Article  Google Scholar 

  19. He XC, Yin T, Grindley JC et al (2007) PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nat Genet 39:189–198

    Article  Google Scholar 

  20. Behrens J, von Kries JP, Kuhl M et al (1996) Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382:638–642

    Article  Google Scholar 

  21. Molenaar M, van de Wetering M, Oosterwegel M et al (1996) XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 86:391–399

    Article  Google Scholar 

  22. Hurlstone A, Clevers H (2002) T-cell factors: turn-ons and turn-offs. EMBO J 21:2303–2311

    Article  Google Scholar 

  23. Kelly KF, Ng DY, Jayakumaran G et al (2011) β-Catenin enhances Oct-4 activity and reinforces pluripotency through a TCF-independent mechanism. Cell Stem Cell 8:214–227

    Article  Google Scholar 

  24. Cole MF, Johnstone SE, Newman JJ et al (2008) Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev 22:746–755

    Article  Google Scholar 

  25. Faunes F, Hayward P, Descalzo SM et al (2013) A membrane-associated beta-catenin/Oct4 complex correlates with ground-state pluripotency in mouse embryonic stem cells. Development 140:1171–1183

    Article  Google Scholar 

  26. Wray J, Kalkan T, Gomez-Lopez S et al (2011) Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nat Cell Biol 13:838–845

    Article  Google Scholar 

  27. Merrill BJ (2012) Wnt pathway regulation of embryonic stem cell self-renewal. Cold Spring Harb Perspect Biol 4:a007971

    Article  Google Scholar 

  28. Miki T, Yasuda SY, Kahn M (2011) Wnt/beta-catenin signaling in embryonic stem cell self-renewal and somatic cell reprogramming. Stem Cell Rev 7:836–846

    Article  Google Scholar 

  29. Ling LS, Voskas D, Woodgett JR (2013) Activation of PDK-1 maintains mouse embryonic stem cell self-renewal in a PKB-dependent manner. Oncogene 44:1–12

    Google Scholar 

  30. Niwa H, Ogawa K, Shimosato D et al (2009) A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature 460:118–122

    Article  Google Scholar 

  31. Bourillot PY, Aksoy I, Schreiber V et al (2009) Novel STAT3 target genes exert distinct roles in the inhibition of mesoderm and endoderm differentiation in cooperation with Nanog. Stem Cells 27:1760–1771

    Article  Google Scholar 

  32. Hall J, Guo G, Wray J et al (2009) Oct4 and LIF/Stat3 additively induce Kruppel factors to sustain embryonic stem cell self-renewal. Cell Stem Cell 5:597–609

    Article  Google Scholar 

  33. Pan G, Li J, Zhou Y et al (2006) A negative feedback loop of transcription factors that controls stem cell pluripotency and self-renewal. FASEB J 20:1730–1732

    Article  Google Scholar 

  34. Chew JL, Loh YH, Zhang W et al (2005) Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol Cell Biol 25:6031–6046

    Article  Google Scholar 

  35. Beattie GM, Lopez AD, Bucay N et al (2005) Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells 23:489–495

    Article  Google Scholar 

  36. Xiao L, Yuan X, Sharkis SJ (2006) Activin A maintains self-renewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells. Stem Cells 24:1476–1486

    Article  Google Scholar 

  37. Vallier L, Mendjan S, Brown S et al (2009) Activin/Nodal signalling maintains pluripotency by controlling Nanog expression. Development 136:1339–1349

    Article  Google Scholar 

  38. Singh AM, Reynolds D, Cliff T et al (2012) Signaling network crosstalk in human pluripotent cells: a Smad2/3-regulated switch that controls the balance between self-renewal and differentiation. Cell Stem Cell 10:312–326

    Article  Google Scholar 

  39. Jeong CH, Cho YY, Kim MO et al (2010) Phosphorylation of Sox2 cooperates in reprogramming to pluripotent stem cells. Stem Cells 28:2141–2150

    Article  Google Scholar 

  40. Singh S, Trevino J, Bora-Singhal N et al (2012) EGFR/Src/Akt signaling modulates Sox2 expression and self-renewal of stem-like side-population cells in non-small cell lung cancer. Mol Cancer 11:73

    Article  Google Scholar 

  41. Ambrosetti DC, Basilico C, Dailey L (1997) Synergistic activation of the fibroblast growth factor 4 enhancer by Sox2 and Oct-3 depends on protein–protein interactions facilitated by a specific spatial arrangement of factor binding sites. Mol Cell Biol 17:6321–6329

    Google Scholar 

  42. Campbell PA, Rudnicki MA (2013) Oct4 interaction with Hmgb2 regulates Akt signaling and pluripotency. Stem Cells 31:1107–1120

    Article  Google Scholar 

  43. Brumbaugh J, Hou Z, Russell JD et al (2012) Phosphorylation regulates human OCT4. Proc Natl Acad Sci USA 109:7162–7168

    Article  Google Scholar 

  44. Lin Y, Yang Y, Li W et al (2012) Reciprocal regulation of Akt and Oct4 promotes the self-renewal and survival of embryonal carcinoma cells. Mol Cell 48:627–640

    Article  Google Scholar 

  45. Butteroni C, De Felici M, Scholer HR et al (2000) Phage display screening reveals an association between germline-specific transcription factor Oct-4 and multiple cellular proteins. J Mol Biol 304:529–540

    Article  Google Scholar 

  46. Zwilling S, Konig H, Wirth T (1995) High mobility group protein 2 functionally interacts with the POU domains of octamer transcription factors. EMBO J 14:1198–1208

    Google Scholar 

  47. Matoba R, Niwa H, Masui S et al (2006) Dissecting Oct3/4-regulated gene networks in embryonic stem cells by expression profiling. PLoS ONE 1:e26

    Article  Google Scholar 

  48. Virgilio L, Narducci MG, Isobe M et al (1994) Identification of the TCL1 gene involved in T-cell malignancies. Proc Natl Acad Sci USA 91:12530–12534

    Article  Google Scholar 

  49. Ivanova N, Dobrin R, Lu R et al (2006) Dissecting self-renewal in stem cells with RNA interference. Nature 442:533–538

    Article  Google Scholar 

  50. Pekarsky Y, Koval A, Hallas C et al (2000) Tcl1 enhances Akt kinase activity and mediates its nuclear translocation. Proc Natl Acad Sci USA 97:3028–3033

    Article  Google Scholar 

  51. Yu KR, Yang SR, Jung JW et al (2012) CD49f enhances multipotency and maintains stemness through the direct regulation of OCT4 and SOX2. Stem Cells 30:876–887

    Article  Google Scholar 

  52. Bouvard C, Gafsou B, Dizier B et al (2010) Alpha6-integrin subunit plays a major role in the proangiogenic properties of endothelial progenitor cells. Arterioscler Thromb Vasc Biol 30:1569–1575

    Article  Google Scholar 

  53. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  Google Scholar 

  54. Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988

    Article  Google Scholar 

  55. Chaerkady R, Kerr CL, Kandasamy K et al (2010) Comparative proteomics of human embryonic stem cells and embryonal carcinoma cells. Proteomics 10:1359–1373

    Article  Google Scholar 

  56. Sperger JM, Chen X, Draper JS et al (2003) Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc Natl Acad Sci USA 100:13350–13355

    Article  Google Scholar 

  57. Li J, Zhou BP (2011) Activation of beta-catenin and Akt pathways by Twist are critical for the maintenance of EMT associated cancer stem cell-like characters. BMC Cancer 11:49

    Article  Google Scholar 

  58. Dubrovska A, Kim S, Salamone RJ et al (2009) The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci USA 106:268–273

    Article  Google Scholar 

  59. Hu T, Liu S, Breiter DR et al (2008) Octamer 4 small interfering RNA results in cancer stem cell-like cell apoptosis. Cancer Res 68:6533–6540

    Article  Google Scholar 

  60. Wang XQ, Ongkeko WM, Chen L et al (2010) Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4–Akt–ATP-binding cassette G2 pathway. Hepatology 52:528–539

    Article  Google Scholar 

  61. Korkaya H, Paulson A, Charafe-Jauffret E et al (2009) Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol 7:e1000121

    Article  Google Scholar 

  62. Campbell PA, Perez-Iratxeta C, Andrade-Navarro MA et al (2007) Oct4 targets regulatory nodes to modulate stem cell function. PLoS ONE 2:e553

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31271465).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingjie Wang.

Additional information

Tong Su and Songsong Dan contributed equally to this work.

About this article

Cite this article

Su, T., Dan, S. & Wang, Y. Akt–Oct4 regulatory circuit in pluripotent stem cells. Chin. Sci. Bull. 59, 936–943 (2014). https://doi.org/10.1007/s11434-014-0131-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0131-y

Keywords

Navigation