Chinese Science Bulletin

, Volume 58, Issue 16, pp 1857–1863 | Cite as

Isolation and characterization of H7N9 viruses from live poultry markets — Implication of the source of current H7N9 infection in humans

  • JianZhong Shi
  • GuoHua Deng
  • PeiHong Liu
  • JinPing Zhou
  • LiZheng Guan
  • WenHui Li
  • XuYong Li
  • Jing Guo
  • GuoJun Wang
  • Jun Fan
  • JinLiang Wang
  • YuanYuan Li
  • YongPing Jiang
  • LiLing Liu
  • GuoBin Tian
  • ChengJun Li
  • HuaLan Chen
Open Access
Invited Article Virology

Abstract

On March 31, 2013, the National Health and Family Planning Commission announced that human infections with a previously undescribed influenza A (H7N9) virus had occurred in Shanghai and Anhui Province, China. To investigate the possible origins of the H7N9 viruses causing these human infections, we collected 970 samples, including drinking water, soil, and cloacal and tracheal swabs of poultry from live poultry markets and poultry farms in Shanghai and Anhui Province. Twenty samples were positive for the H7N9 influenza virus. Notably, all 20 viruses were isolated from samples collected from live poultry markets in Shanghai. Phylogenetic analyses showed that the six internal genes of these novel human H7N9 viruses were derived from avian H9N2 viruses, but the ancestor of their HA and NA genes is uncertain. When we examined the phylogenetic relationship between the H7N9 isolates from live poultry markets and the viruses that caused the human infections, we found that they shared high homology across all eight gene segments. We thus identified the direct avian origin of the H7N9 influenza viruses that caused the human infections. Importantly, we observed that the H7N9 viruses isolated from humans had acquired critical mutations that made them more “human-like”. It is therefore imperative to take strong measures to control the spread of H7N9 viruses in birds and humans to prevent further threats to human health.

Keywords

H7N9 influenza virus human infection virus source 

References

  1. 1.
    Li C, Hatta M, Watanabe S, et al. Compatibility among polymerase subunit proteins is a restricting factor in reassortment between equine H7N7 and human H3N2 influenza viruses. J Virol, 2008, 82: 11880–11888CrossRefGoogle Scholar
  2. 2.
    Holland J, Spindler K, Horodyski F, et al. Rapid evolution of RNA genomes. Science, 1982, 215: 1577–1585CrossRefGoogle Scholar
  3. 3.
    Yang H, Qiao C, Tang X, et al. Human infection from avian-like influenza A (H1N1) viruses in pigs, China. Emerg Infect Dis, 2012, 18: 1144–1146Google Scholar
  4. 4.
    Hoffmann E, Stech J, Guan Y, et al. Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol, 2001, 146: 2275–2289CrossRefGoogle Scholar
  5. 5.
    Senne D A, Panigrahy B, Kawaoka Y, et al. Survey of the hemagglutinin (HA) cleavage site sequence of H5 and H7 avian influenza viruses: Amino acid sequence at the HA cleavage site as a marker of pathogenicity potential. Avian Dis, 1996, 40: 425–437CrossRefGoogle Scholar
  6. 6.
    Subbarao K, Chen H, Swayne D, et al. Evaluation of a genetically modified reassortant H5N1 influenza a virus vaccine candidate generated by plasmid-based reverse genetics. Virology, 2003, 305: 192–200CrossRefGoogle Scholar
  7. 7.
    Zhang Y, Zhang Q, Gao Y, et al. Key molecular factors in hemagglutinin and PB2 contribute to efficient transmission of the 2009 H1N1 pandemic influenza virus. J Virol, 2012, 86: 9666–9674CrossRefGoogle Scholar
  8. 8.
    Chen Z, Zhou H, Kim L, et al. The receptor binding specificity of the live attenuated influenza H2 and H6 vaccine viruses contributes to vaccine immunogenicity and protection in ferrets. J Virol, 2012, 86: 2780–2786CrossRefGoogle Scholar
  9. 9.
    Naeve C W, Hinshaw V S, Webster R G. Mutations in the hemagglutinin receptor-binding site can change the biological properties of an influenza virus. J Virol, 1984, 51: 567–569Google Scholar
  10. 10.
    Srinivasan K, Raman R, Jayaraman A, et al. Quantitative description of glycan-receptor binding of influenza A virus H7 hemagglutinin. PLoS One, 2013, 8: e49597CrossRefGoogle Scholar
  11. 11.
    Subbarao E K, London W, Murphy B R. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol, 1993, 67: 1761–1764Google Scholar
  12. 12.
    Li Z, Chen H, Jiao P, et al. Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol, 2005, 79: 12058–12064CrossRefGoogle Scholar
  13. 13.
    Gao Y, Zhang Y, Shinya K, et al. Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathog, 2009, 5: e1000709CrossRefGoogle Scholar
  14. 14.
    Hatta M, Gao P, Halfmann P, et al. Molecular basis for high virulence of Hongkong H5N1 influenza A viruses. Science, 2001, 293: 1840–1842CrossRefGoogle Scholar
  15. 15.
    Jackson D, Hossain M J, Hickman D, et al. A new influenza virus virulence determinant: The NS1 protein four C-terminal residues modulate pathogenicity. Proc Natl Acad Sci USA, 2008, 105: 4381–4386CrossRefGoogle Scholar
  16. 16.
    Conenello G M, Zamarin D, Perrone L A, et al. A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS Pathog, 2007, 3: 1414–1421CrossRefGoogle Scholar
  17. 17.
    Zamarin D, Ortigoza M B, Palese P. Influenza A virus PB1-F2 protein contributes to viral pathogenesis in mice. J Virol, 2006, 80: 7976–7983CrossRefGoogle Scholar
  18. 18.
    Saito R, Sakai T, Sato I, et al. Frequency of amantadine-resistant influenza A viruses during two seasons featuring cocirculation of H1N1 and H3N2. J Clin Microbiol, 2003, 41: 2164–2165CrossRefGoogle Scholar
  19. 19.
    Shiraishi K, Mitamura K, Sakai-Tagawa Y, et al. High frequency of resistant viruses harboring different mutations in amantadine-treated children with influenza. J Infect Dis, 2003, 188: 57–61CrossRefGoogle Scholar
  20. 20.
    Kurtz J, Manvell R J, Banks J. Avian influenza virus isolated from a woman with conjunctivitis. Lancet, 1996, 348: 901–902CrossRefGoogle Scholar
  21. 21.
    Campbell C H, Webster R G, Breese S S Jr. Fowl plague virus from man. J Infect Dis, 1970, 122: 513–516CrossRefGoogle Scholar
  22. 22.
    Banks J, Speidel E, Alexander D J. Characterisation of an avian influenza A virus isolated from a human-Is an intermediate host necessary for the emergence of pandemic influenza viruses? Arch Virol, 1998, 143: 781–787CrossRefGoogle Scholar
  23. 23.
    Taylor H R, Turner A J. A case report of fowl plague keratoconjunctivitis. Br J Ophthalmol, 1977, 61: 86–88CrossRefGoogle Scholar
  24. 24.
    Tweed S A, Skowronski D M, David S T, et al. Human illness from avian influenza H7N3, British Columbia. Emerg Infect Dis, 2004, 10: 2196–2199CrossRefGoogle Scholar
  25. 25.
    Koopmans M, Wilbrink B, Conyn M, et al. Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet, 2004, 363: 587–593CrossRefGoogle Scholar
  26. 26.
    Fouchier R A, Schneeberger P M, Rozendaal F W, et al. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci USA, 2004, 101: 1356–1361CrossRefGoogle Scholar
  27. 27.
    Capua I, Mutinelli F, Marangon S, et al. H7N1 avian influenza in Italy (1999 to 2000) in intensively reared chickens and turkeys. Avian Pathol, 2000, 29: 537–543CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • JianZhong Shi
    • 1
  • GuoHua Deng
    • 1
  • PeiHong Liu
    • 2
  • JinPing Zhou
    • 2
  • LiZheng Guan
    • 1
  • WenHui Li
    • 1
  • XuYong Li
    • 1
  • Jing Guo
    • 1
  • GuoJun Wang
    • 1
  • Jun Fan
    • 1
  • JinLiang Wang
    • 1
  • YuanYuan Li
    • 1
  • YongPing Jiang
    • 1
  • LiLing Liu
    • 1
  • GuoBin Tian
    • 1
  • ChengJun Li
    • 1
  • HuaLan Chen
    • 1
  1. 1.Animal Influenza Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
  2. 2.Shanghai Animal Disease Control CenterShanghaiChina

Personalised recommendations