Tooth loss and alveolar remodeling in Sinosaurus triassicus (Dinosauria: Theropoda) from the lower jurassic strata of the Lufeng Basin, China

Abstract

Pathological or traumatic loss of teeth often results in the resorption and remodeling of the affected alveoli in mammals. However, instances of alveolar remodeling in reptiles are rare. A remodeled alveolus in the maxilla of the Chinese theropod Sinosaurus (Lower Jurassic Lower Lufeng Formation) is the first confirmed example of such dental pathology in a dinosaur. Given the known relationship between feeding behavior and tooth damage in theropods (teeth with spalled enamel, tooth crowns embedded in bone) and the absence of dentary, maxillary, and premaxillary osteomyelitis, traumatic loss of a tooth is most likely the cause of alveolar remodeling. Based on the extent of remodeling, the injury and subsequent tooth loss were non-fatal in this individual.

References

  1. 1

    Molnar R E. Theropod paleopathology: A literature survey. In: Tanke D H, Carpenter K, eds. Mesozoic Vertebrate Life. Bloomington: Indiana University Press, 2001. 337–363

    Google Scholar 

  2. 2

    Rothschild B, Tanke D H. Theropod paleopathology, state-of-the-art review. In: Carpenter K, ed. The Carnivorous Dinosaurs. Bloomington: Indiana University Press, 2005. 351–365

    Google Scholar 

  3. 3

    Lü J C, Kobayashi Y, Lee Y N, et al. A new Psittacosaurus (Dinosauria: Ceratopsia) specimen from the Yixian Formation of western Liaoning, China: The first pathological psittacosaurid. Cret Res, 2007, 28: 272–276

    Article  Google Scholar 

  4. 4

    Rothschild B, Zheng X T, Martin L. Osteoarthritis in the early avian radiation: Earliest recognition of the disease in birds. Cret Res, 2012, 35: 178–180

    Article  Google Scholar 

  5. 5

    Tanke D H, Currie P J. Head-biting behavior in theropod dinosaurs: Paleopathological evidence. Gaia, 2000, 15: 167–184

    Google Scholar 

  6. 6

    Xing L D, Dong H, Peng G Z, et al. A scapular fracture in Yang-chuanosaurus hepingensis (Dinosauria: Theropoda). Geol Bull Chin, 2009, 28: 1390–1395

    Google Scholar 

  7. 7

    Hu S J. A new Theropoda (Dilophosaurus sinensis sp. nov.) from Yunnan, China. Vert PalAs, 1993, 31: 65–69

    Google Scholar 

  8. 8

    Dong Z M. Contributions of new dinosaur materials from China to dinosaurology. Mem Fukui Pref Dino Mus, 2003, 2: 123–131

    Google Scholar 

  9. 9

    Xing L D. Sinosaurus from southwestern China. MS Thesis (unpublished). Edmonton: University of Alberta, 2012

    Google Scholar 

  10. 10

    Smith N D, Makovicky P J, Hammer W R, et al. Osteology of Cryolophosaurus ellioti (Dinosauria: Theropoda) from the Early Jurassic of Antarctica and implications for early theropod evolution. Zool J linn Soc Lond. 2007. 151: 377–421

    Article  Google Scholar 

  11. 11

    Luo Z X, Wu X C. The small tetrapods of the Lower Lufeng Formation, Yunnan, China. In: Fraser N C, Sues H D, eds. In the Shadow of the Dinosaurs: Early Mesozoic Tetrapods. Cambridge: Cambridge University Press, 1994. 251–270

    Google Scholar 

  12. 12

    Bien M N. “Red Beds” of Yunnan. Bull Geol Soc Chin, 1941, 21: 159–198

    Google Scholar 

  13. 13

    Young C C. The Lufeng saurischian fauna in China. Palaeontol Sin, 1951, New Series C 13: 1–96

  14. 14

    Sheng S F, Chang L Q, Cai S Y, et al. The problem of the age and correlation of the red beds and the coal series of Yunnan and Szechuan. Acta Geol Sin, 1962, 42: 31–56

    Google Scholar 

  15. 15

    Sun A L, Cui K H. A brief introduction to the Lower Lufeng saurischian fauna (Lower Jurassic: Lufeng, Yunnan, People’s Republic of China). In: Padian K, ed. The Beginning of the Age of Dinosaurs: Faunal Change Across the Triassic-Jurassic Boundary. Cambridge: Cambridge University Press, 1986. 275–278

    Google Scholar 

  16. 16

    Fang X S, Pang Q J, Lu L W, et al. Lower, Middle, and Upper Jurassic subdivision in the Lufeng region, Yunnan Province. In: Editorial Committee of the Proceedings of the Third National Stratigraphical Congress of China, eds. Proceedings of the Third National Stratigraphical Congress of China. Beijing: Geological Publishing House, 2000. 208–214

    Google Scholar 

  17. 17

    Barrett P M, Upchurch P, Wang X L. Cranial osteology of Lufengosaurus hueni Young (Dinosauria: Prosauropoda) from the Lower Jurassic of Yunnan, People’s Republic of China. J Vert Paleontol, 2005, 25: 806–822

    Article  Google Scholar 

  18. 18

    Farlow J O, Brinkman D L, Abler W L, et al. Size, shape, and serration density of theropod dinosaur lateral teeth. Mod Geol, 1991, 16: 161–198

    Google Scholar 

  19. 19

    Farlow J O, Brinkman D L. Wear surfaces on the teeth of tyrannosaurs. Paleontol Soc Spec Publ, 1994, 7. 165–175

    Google Scholar 

  20. 20

    Schubert B W, Ungar P S. Wear facets and enamel spalling in tyrannosaurid dinosaurs. Acta Palaeontol Pol, 2005, 50: 93–99

    Google Scholar 

  21. 21

    Erickson G M. Split carinae on tyrannosaurid teeth and implications of their development. J Vert Paleontol, 1995, 15: 268–274

    Article  Google Scholar 

  22. 22

    Carpenter K. Baby dinosaurs from the Late Cretaceous lance and Hell Creek formations and a description of a new species of theropod. U Wyo Contr Geol, 1982, 20: 123–134

    Google Scholar 

  23. 23

    Wolff E D S, Varricchio D. Zoological paleopathology and the case of the tyrannosaurus jaw: Integrating phylogeny and the study of ancient disease. Geol Soc Am Abstr Prog, 2005, 37: 88

    Google Scholar 

  24. 24

    Rothschild B M, Molnar R E. Tyrannosaurid pathologies as clues to nature and nuture in the Cretaceous. In: Larson P, Carpenter K, eds. Tyrannosaurus rex, the Tyrant King. Bloomington: Indiana University Press, 2008. 287–306

    Google Scholar 

  25. 25

    Bell P R, Currie P J. A tyrannosaur jaw bitten by a confamilial: Scavenging or fatal agonism? Lethaia, 2009, 43: 278–281

    Article  Google Scholar 

  26. 26

    Bell P R. Palaeopathological changes in a population of Albertosaurus sarcophagus from the Upper Cretaceous Horseshoe Canyon Formation of Alberta, Canada. Can J Earth Sci, 2010, 47: 1263–1268

    Article  Google Scholar 

  27. 27

    Moodie R L. Dental abscesses in a dinosaur millions of years old, and the oldest yet known. Pac Dent Gaz, 1930, 38: 435–440

    Google Scholar 

  28. 28

    Reisz R, Scott D M, Pynn B R, et al. Osteomyelitis in a Paleozoic reptile: Ancient evidence for bacterial infection and its evolutionary significance. Naturwissenschaften, 2011, 98: 551–555

    Article  Google Scholar 

  29. 29

    Morgan J. Observable stages and scheduling for alveolar remodeling following antemortem tooth loss. Dissertation for the Doctoral Degree (unpublished). Mainz: Johannes Gutenberg-Universität, 2011

    Google Scholar 

  30. 30

    Hungerbühler A. Heterodonty in the European phytosaur Nicrosaurus kapffi and its implications for the taxonomic utility and functional morphology of phytosaur dentitions. J Vert Paleontol, 2000, 20: 31–48

    Article  Google Scholar 

  31. 31

    Rothschild B M, Schultze H P, Peligrini R. Herpetological Osteopathology: Annotated Bibliography of Amphibians and Reptiles. Heidelberg: Springer-Verlag, 2012

    Book  Google Scholar 

  32. 32

    Miles A E, Grigson C. Colyer’s Variations and Diseases of the Teeth of Animals. Cambridge: Cambridge University Press, 1990

    Book  Google Scholar 

  33. 33

    Stoner K E. Dental pathology in Pongo satyrus borneensis. Am J Phys Anthropol, 1995, 98: 307–321

    Article  Google Scholar 

  34. 34

    Cuozzo F P, Sauther M L. Tooth loss, survival, and resource use in wild ring-tailed lemurs (Lemur catta): Implications for inferring conspecific care in fossil hominids. J Hum Evol, 2004, 46: 623–631

    Article  Google Scholar 

  35. 35

    Cuozzo F P, Sauther M L. Severe wear and tooth loss in wild ring-tailed lemurs (Lemur catta): A function of feeding ecology, dental structure, and individual life history. J Hum Evol, 2006, 51: 490–505

    Article  Google Scholar 

  36. 36

    Hillson S. Recording dental caries in archaeological remains. Int J Osteoarchaeol, 2001, 11: 249–289

    Article  Google Scholar 

  37. 37

    Lukacs J R. Dental trauma and antemortem tooth loss in prehistoric Canary Islanders: Prevalence and contributing factors. Int J Osteoarchaeol, 2007, 17: 157–173

    Article  Google Scholar 

  38. 38

    Wright G, Bell A, McGlashan, G, et al. Dentoalveolar trauma in Glasgow: An audit of mechanism and injury. Dent Traumatol, 2007, 23: 226–231.

    Article  Google Scholar 

  39. 39

    Schubert B W, Ungar P S. Wear facets and enamel spalling in tyrannosaurid dinosaurs. Acta Palaeontol Pol, 2005, 50: 93–99

    Google Scholar 

  40. 40

    Varricchio D, Horner J R. Hadrosaurid and lambeosaurid bonebeds from the Upper Cretaceous Two Medicine Formation of Montana: Taphonomic and biologic implications. Can J Earth Sci, 1993, 29: 997–1006

    Article  Google Scholar 

  41. 41

    Ryan M J, Russell A P, Eberth D A, et al. The taphonomy of a Centrosaurus (Ornithischia: Ceratopsidae) bonebed from the Dinosaur Park Formation (Upper Campanian), Alberta, Canada, with comments on cranial ontogeny. Palaios, 2001, 16: 482–506

    Article  Google Scholar 

  42. 42

    Eberth D A, Getty M. Ceratopsian bonebeds. In: Currie P J, Koppelhus E B, eds. Dinosaur Provincial Park: A Spectacular Ancient Ecosystem Revealed. Bloomington: Indiana University Press, 2005. 501–536

    Google Scholar 

  43. 43

    Currie P J, Jacobsen A R. An azhdarchid pterosaur eaten by a velociraptorine theropod. Can J Earth Sci, 1995, 32: 922–925

    Article  Google Scholar 

  44. 44

    Buffetaut E, Martill D, Escuillié F. Pterosaurs as part of a spinosaur diet. Nature, 2004, 430: 33

    Article  Google Scholar 

  45. 45

    Xing L D, Bell P R, Currie P J, et al. A sauropod rib with an embedded theropod tooth: Direct evidence for feeding behaviour in the Jehol group, China. Lethaia, 2012, doi: 10.1111/j.1502-3931.2012.00310.x

    Google Scholar 

  46. 46

    Marsh O. Principal characters of American Jurassic dinosaurs part VIII the order Theropoda. Am J Sci, 1884, 27: 411–416

    Google Scholar 

  47. 47

    Rothschild B M. Dinosaurian paleopathology. In: Farlow J O, Brett-Surman M K, eds. The Complete Dinosaur. Bloomington: Indiana University Press, 1997. 426–448

    Google Scholar 

  48. 48

    Schropp L, Wenzel A, Kostopoulos L, et al. Bone healing and soft tissue contour changes following single-tooth extraction: A clinical and radiographic 12-month prospective study. Int J Perio Rest Dent, 2003, 23: 313–323

    Google Scholar 

  49. 49

    Hanna R R. Multiple injury and infection in a sub-adult theropod dinosaur Allosaurus fragilis with comparisons to allosaur pathology in the Cleveland-Lloyd Dinosaur Quarry collection. J Vert Paleontol, 2002, 22: 76–90

    Article  Google Scholar 

  50. 50

    Farke A A, O’Connor P M. Pathology in Majungasaurus crenatissimus (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar. J Vert Paleontol, 2007, 27(Suppl 2): 180–184

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to LiDa Xing.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Xing, L., Bell, P.R., Rothschild, B.M. et al. Tooth loss and alveolar remodeling in Sinosaurus triassicus (Dinosauria: Theropoda) from the lower jurassic strata of the Lufeng Basin, China. Chin. Sci. Bull. 58, 1931–1935 (2013). https://doi.org/10.1007/s11434-013-5765-7

Download citation

Keywords

  • alveolar remodeling
  • paleopathology
  • Sinosaurus
  • Lufeng Basin
  • China