Skip to main content
Log in

Progress and development trends in the numerical modeling of solidification

  • Review
  • Materials Science
  • Published:
Chinese Science Bulletin

Abstract

The history of development and current situation of the theoretical description and numerical modeling of the solidification process are reviewed. The status and problems of the related research are discussed, with the main focus being on the solidification theories associated with microstructure formation and the concurrent macro-/microcoupling methods used to simulate solidification. Furthermore, the development trends of the theoretical description and numerical modeling of solidification are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhou YH, Zhang YW, Qu WT et al (1979) Researches on insulating riser technique (in Chinese). J Northwest Polytech Univ 2:21–31

    Google Scholar 

  2. Ohno A, Motegi T, Soda H (1971) Origin of the equiaxed crystals in castings. Trans ISIJ 11:18–26

    Google Scholar 

  3. Tiller WA, Jachson KA, Rutter JW et al (1953) The redistribution of solute atoms during the solidification of metals. Acta Metall 1:428–437

    Article  Google Scholar 

  4. Mullins WW, Sekerka RF (1963) Morphological stability of a particle growing by diffusion or heat flow. Appl Phys 34:323–329

    Article  Google Scholar 

  5. Huang WD (1989) Solution redistribution and interface morphology selection during non-steady-state solidification process (in Chinese). Dissertation for doctoral degree. Northwestern Polytechnical University, Xi’an

  6. Warren JA, Langer JS (1990) Stability of dendritic arrays. Phys Rev A 42:3518–3525

    Article  Google Scholar 

  7. Lu SZ, Hunt JD (1992) A numerical-analysis of dendritic and cellular array growth-the spacing adjustment mechanisms. J Cryst Growth 123:17–34

    Article  Google Scholar 

  8. Huang WD, Geng XG, Zhou YH (1993) Primary spacing selection of constrained dendritic growth. J Cryst Growth 134:105–115

    Article  Google Scholar 

  9. Hunt JD (1984) Steady state columnar and equiaxed growth of dendrites and eutectic. Mater Sci Eng 65:75–83

    Article  Google Scholar 

  10. Gäumann M, Trivedi R, Kurz W (1997) Nucleation ahead of the advancing interface in directional solidification. Mater Sci Eng A 226–228:763–769

    Article  Google Scholar 

  11. Gäumann M, Bezencon C, Canalis P et al (2001) Single-crystal laser deposition of superalloys: processing-microstructure maps. Acta Mater 49:1051–1062

    Article  Google Scholar 

  12. Lin X, Li YM, Wang M et al (2003) Columnar to equiaxed transition during alloy solidification (in Chinese). Sci China Ser E 46:475–489

    Article  Google Scholar 

  13. Jackson KA, Hunt JD (1966) Lamellar and rod eutectic growth. Trans Metall Soc AIME 236:1129–1142

    Google Scholar 

  14. Boettinger WJ (1974) The structure of directionally solidified two phase Sn-Cd peritectic alloys. Metall Trans 5:2023–2031

    Article  Google Scholar 

  15. Kerr HW, Kurz W (1996) Solidification of peritectic alloys. Int Mater Rev 41:129–164

    Article  Google Scholar 

  16. Wang M, Su YP, Lin X et al (2003) Microstructure evolution in unidirectionally solidified Zn-Cu peritectic alloy: II. Modification on the analysis (in Chinese). Acta Metall Sin 39:838–842

    Google Scholar 

  17. Jackson KA (1958) Liquid metals and solidification, ASM. Ohio, Metals Park, p 174

    Google Scholar 

  18. Napolitano RE, Meco H, Jung C (2004) Faceted solidification morphologies in Al-Si eutectics at low growth rates. JOM 56:16–21

    Article  Google Scholar 

  19. Lee Y, Irie Y, Yamamoto S et al (1984) Influences of Mg, S and graphitization rate on the spheroidization of graphite. J Jpn Inst Met 48:1041–1046

    Google Scholar 

  20. Beckermann C, Viskanta R (1993) Mathematical modeling of transport phenomena during alloy solidification. Appl Mech Rev 46:1–27

    Article  Google Scholar 

  21. Beckermann C (2002) Modeling of macrosegregation: Applications and future needs. Int Mater Rev 47:243–261

    Article  Google Scholar 

  22. Wu M, Ludwig A, Bührig-Polaczek A et al (2003) Influence of convection and grain movement on globular equiaxed solidification. Int J Heat Mass Transf 46:2819–2832

    Article  Google Scholar 

  23. Ludwig A, Wu M (2002) Modeling of globular equiaxed solidification with a two-phase approach. Metall Mater Trans A 33:3673–3683

    Article  Google Scholar 

  24. Wu M, Ludwig A (2003) Influence of phase transport phenomena on macrosegregation and structure formation during solidification. Adv Eng Mater 5:62–66

    Article  Google Scholar 

  25. Wu M, Ludwig A (2009) Modeling equiaxed solidification with melt convection and grain sedimentation—I: model description. Acta Mater 57:5621–5631

    Article  Google Scholar 

  26. Wu M, Ludwig A, Fjeld A (2010) Modeling mixed columnar-equiaxed solidification with melt convection and grain sedimentation—part II: illustrative modeling results and parameter studies. Comput Mater Sci 50:43–58

    Article  Google Scholar 

  27. Boettinger WJ, Warren JA, Beckermann C et al (2002) Phase-field simulation of solidification. Annu Rev Mater Res 32:163–194

    Article  Google Scholar 

  28. Collins JB, Levine H (1985) Diffuse interface model of diffusion-limited crystal growth. Phys Rev B 31:6119–6122

    Article  Google Scholar 

  29. Caginalp G (1986) An analysis of a phase field model of a free boundary. Arch Ration Mech Anal 92:205–245

    Google Scholar 

  30. Caginalp G, Fife P (1986) Higher-order phase field models and detailed anisotropy. Phys Rev B 34:4940–4943

    Article  Google Scholar 

  31. Caginalp G, Fife P (1986) Phase-field methods for interfacial boundaries. Phys Rev B 33:7792–7794

    Article  Google Scholar 

  32. Langer JS (1987) Lectures in the theory of pattern formation. In: Souletie J, Vannimenus J, Stora R (eds) Chance and matter. Elsevier Science Publishers, Amsterdam, pp 692–711

    Google Scholar 

  33. Caginalp G, Fife P (1986) Higher-order phase field models and detailed anisotropy. Phys Rev B 34:4940–4943

    Article  Google Scholar 

  34. Fife PC, Gill GS (1991) Phase-transition mechanisms for the phase-field model under internal heating. Phys Rev A 43:843–851

    Article  Google Scholar 

  35. Kobayashi R (1993) Modeling and numerical simulations of dendritic crystal growth. Phys D 63:410–423

    Article  Google Scholar 

  36. Kobayashi R (1994) A numerical approach to three-dimensional dendritic solidification. Exp Math 3:59–81

    Article  Google Scholar 

  37. Penrose O, Fife PC (1990) Thermodynamically consistent models of phase-field type for the kinetic of phase transitions. Phys D 43:42–44

    Article  Google Scholar 

  38. Wang SL, Sekerka RF, Wheeler AA et al (1993) Thermodynamically-consistent phase-field models for solidification. Phys D 69:189–200

    Article  Google Scholar 

  39. Wheeler AA, Boettinger WJ, McFadden GB (1992) Phase field model for isothermal phase transition in binary alloys. Phys Rev E 45:7424–7439

    Article  Google Scholar 

  40. Karma A, Rappel WJ (1996) Phase field method for computationally efficient modeling of solidification with arbitrary interface kinetics. Phys Rev E 53:3017–3020

    Article  Google Scholar 

  41. Karma A, Rappel WJ (1998) Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys Rev E 57:4323–4349

    Article  Google Scholar 

  42. Wheeler AA, Boettinger WJ, Mcfadden GB (1993) Phase-field model of solute trapping during solidification. Phys Rev E 47:1893–1909

    Article  Google Scholar 

  43. Ahmad NA, Wheeler AA, Boettinger WJ et al (1998) Solute trapping and solute drag in a phase-field model of rapid solidification. Phys Rev E 58:3436–3450

    Article  Google Scholar 

  44. Conti M (1997) Solute trapping in directional solidification at high speed: a one-dimensional study with the phase-field model. Phys Rev E 56:3717–3720

    Article  Google Scholar 

  45. Warren JA, Boettinger WJ (1995) Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method. Acta Metal Mater 43:689–703

    Article  Google Scholar 

  46. Karma A (2001) Phase-field formulation for quantitative modeling of alloy solidification. Phys Rev Lett 87:115701

    Article  Google Scholar 

  47. Kim SG (2007) A phase-field model with antitrapping current for multicomponent alloys with arbitrary thermodynamic properties. Acta Mater 55:4391–4399

    Article  Google Scholar 

  48. Ohno M, Matsuura K (2009) Quantitative phase-field modeling for dilute alloy solidification involving diffusion in the solid. Phys Rev E 79:031603

    Article  Google Scholar 

  49. Mullins AM, Cochrane RF (2001) A phase field model for spontaneous grain refinement in deeply undercooled metallic melts. Acta Mater 49:2205–2214

    Article  Google Scholar 

  50. Wang JC, Li JJ, Yang YJ et al (2008) Phase field simulation of interface morphology evolution and its stability during directional solidification (in Chinese). Sci China Ser E 38:16–23

    Google Scholar 

  51. Steinbach I, Pezzolla F, Nestler B et al (1996) A phase field concept for multiphase systems. Phys D 94:135–147

    Article  Google Scholar 

  52. Steinbach I, Pezzolla F (1999) A generalized field method for multiphase transformations using interface fields. Phys D 134:385–393

    Article  Google Scholar 

  53. Eiken J, Böttger B, Steinbach I (2006) Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application. Phys Rev E 73:066122

    Article  Google Scholar 

  54. Böttger B, Eiken J, Steinbach I (2006) Phase field simulation of equiaxed solidification in technical alloys. Acta Mater 54:2697–2704

    Article  Google Scholar 

  55. Nestler B, Wheeler AA (2000) A multi-phase-field model of eutectic and peritectic alloys: numerical simulation of growth structures. Phys D 138:114–133

    Article  Google Scholar 

  56. Nestler B, Wheeler AA, Ratke L et al (2000) Phase-field model for solidification of a monotectic alloy with convection. Phys D 141:133–154

    Article  Google Scholar 

  57. Kim SG, Kim WT, Suzuki T et al (2004) Phase-field modeling of eutectic solidification. J Cryst Growth 261:135–158

    Article  Google Scholar 

  58. Folch R, Plapp M (2005) Quantitative phase-field modeling of two-phase growth. Phys Rev E 72:010602

    Google Scholar 

  59. Lewis D, Warren J, Boettinger W et al (2004) Phase-field models for eutectic solidification. JOM 56:34–39

    Article  Google Scholar 

  60. Rappaz M, Gandin CA (1993) Probabilistic modeling of microstructure formation in solidification progress. Acta Metall 41:345–360

    Article  Google Scholar 

  61. Gandin CA, Rappaz M (1994) A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes. Acta Metall 42:2233–2246

    Article  Google Scholar 

  62. Rappaz M, Gandin CA, Desbiolles JL et al (1996) Prediction of grain structures in various solidification processes. Metall Mater Trans A 27:695–705

    Article  Google Scholar 

  63. Gandin CA, Desbiolles JL, Rappaz M et al (1999) A three-dimensional cellular automaton-finite element model for the prediction of solidification grain structures. Metall Mater Trans A 30:3153–3165

    Article  Google Scholar 

  64. Zhu MF, Hong CP (2001) A modified cellular automaton model for the simulation of dendritic growth in solidification of alloys. ISIJ Int 41:436–445

    Article  Google Scholar 

  65. Zhu MF, Kim JM, Hong CP (2001) Modeling of globular and dendritic structure evolution in solidification of an Al-7mass% Si alloy. ISIJ Int 41:992–998

    Article  Google Scholar 

  66. Zhu MF, Hong CP (2002) A three dimensional modified cellular automaton model for the prediction of solidification microstructures. ISIJ Int 42:520–526

    Article  Google Scholar 

  67. Zhu MF, Lee SY, Hong CP (2004) Modified cellular automaton model for the prediction of dendritic growth with melt convection. Phys Rev E 69:061610

    Article  Google Scholar 

  68. Wang W, Kermanpur A, Lee PD et al (2003) Simulation of dendritic growth in the platform region of single crystal superalloy turbine blades. J Mater Sci 38:4385–4391

    Article  Google Scholar 

  69. Huo L, Han ZQ, Liu BC (2009) Modeling and simulation of microstructure evolution of cast magnesium alloys using CA method based on two sets of mesh (in Chinese). Acta Metall Sin 45:1414–1420

    Google Scholar 

  70. Nastac L (1999) Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys. Acta Mater 47:4253–4262

    Article  Google Scholar 

  71. Nastac L, Stefanescu DM (1997) Stochastic modeling of microstructure formation in solidification processes. Model Simul Mater Sci Eng 5:391–420

    Article  Google Scholar 

  72. Beltran-Sanchez L, Stefanescu DM (2002) Growth of solutal dendrites—a cellular automaton model. Int J Cast Metals Res 15:251–256

    Google Scholar 

  73. Beltran-Sanchez L, Stefanescu DM (2003) Growth of solutal dendrites—a cellular automaton model and its quantitative capabilities. Metal Mater Trans 34:367–382

    Article  Google Scholar 

  74. Shan BW, Huang WD, Lin X et al (2008) Dendrite primary spacing selection simulation by the cellular automaton model (in Chinese). Acta Metal Sin 44:1042–1050

    Google Scholar 

  75. Wei L, Lin X, Wang M et al (2011) A cellular automaton model for the solidification of a pure substance. Appl Phys A 103:123–133

    Article  Google Scholar 

  76. Wei L (2012) Cellular automaton method for dendrite growth (in Chinese). Dissertation for doctoral degree. Northwestern Polytechnical University, Xi’an

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2011CB610402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Huang.

Additional information

SPECIAL ISSUE: Materials Genome

About this article

Cite this article

Huang, W., Wang, M. Progress and development trends in the numerical modeling of solidification. Chin. Sci. Bull. 59, 1709–1718 (2014). https://doi.org/10.1007/s11434-013-0092-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-013-0092-6

Keywords

Navigation