Chinese Science Bulletin

, Volume 59, Issue 4, pp 369–373 | Cite as

Effect of substrate miscut on the electron mobility in InSb(001) structures on Ge and Ge-on-insulator substrates

  • M. C. Debnath
  • T. D. Mishima
  • M. B. Santos
  • K. Hossain
Article Condensed Matter Physics


InSb epilayers and InSb/Al0.20In0.80Sb quantum wells were grown on Ge(001) substrates and Ge-on-insulator (GeOI)-on-Si(001) substrates by molecular beam epitaxy. Growth on both on-axis and 4°-off-axis substrate orientations was studied. Anti-phase domains were formed when InSb films were grown on on-axis substrates, but suppressed significantly by the use of 4°-off-axis substrates. Such off-axis substrates also reduced the densities of micro-twin defects and threading dislocations. The defect reduction resulted in an increase in the room-temperature electron mobility from 37,000 to 59,000 cm2/Vs in 4.0-μm-thick InSb epilayers and from 10,000 to 20,000 cm2/Vs in 25-nm-thick InSb quantum wells on Ge(001) and GeOI-on-Si(001) substrates.


InSb Ge-on-insulator Molecular beam epitaxy Electron mobility 


  1. 1.
    Ashley T, Buckle L, Datta S et al (2007) Heterogeneous InSb quantum well transistors on silicon for ultra-high speed, low power logic applications. Electron Lett 43:777–778CrossRefGoogle Scholar
  2. 2.
    Solin SA, Thio T, Hines DR et al (2000) Enhanced room-temperature geometric magnetoresistance in inhomogeneous narrow-gap semiconductors. Science 289:1530–1532CrossRefGoogle Scholar
  3. 3.
    Mishima TD, Edirisooriya M, Santos MB (2007) Reduction of micro twin defects for high-electron-mobility InSb quantum wells. Appl Phys Lett 91:062106Google Scholar
  4. 4.
    Känel HV, Kummer M, Isella G et al (2002) Very high hole mobilities in modulation-doped Ge quantum wells grown by low-energy plasma enhanced chemical vapor deposition. Appl Phys Lett 80:2922–2924CrossRefGoogle Scholar
  5. 5.
    Michel E, Xu J, Kim JD et al (1996) InSb infrared photo detectors on Si substrates grown by molecular beam epitaxy. IEEE Photon Technol Lett 8:673–675CrossRefGoogle Scholar
  6. 6.
    Rawe R, Martin C, Garter M et al (2005) Novel high fill-factor, small pitch, reticulated InSb IR FPA design. Proc SPIE 5783:899–906CrossRefGoogle Scholar
  7. 7.
    Holland OW, White CW, Fathy D (1987) Novel oxidation process in Ge+ implanted Si and its effect on oxidation kinetics. Appl Phys Lett 51:520–522CrossRefGoogle Scholar
  8. 8.
    Nakaharai S, Tezuka T, Sugiyama N et al (2003) Characterization of 7 nm thick strained Ge-on-insulator layer fabricated by Ge-condensation technique. Appl Phys Lett 83:3516–3518CrossRefGoogle Scholar
  9. 9.
    Ting SM, Fitzgerald EA (2000) Metal-organic chemical vapor deposition of single domain GaAs on Ge/GexSi1−x/Si and Ge substrates. J Appl Phys 87:2618–2628CrossRefGoogle Scholar
  10. 10.
    Hossain K, Holland OW, Naab FU et al (2007) Dose-dependent thermal oxidation of Ge+-implanted silicon. Nucl Instr Meth Phys B 261:620–623CrossRefGoogle Scholar
  11. 11.
    Debnath MC, Mishima TD, Santos MB et al (2009) Growth of InSb epilayers and quantum wells on Ge(001) substrates by molecular beam epitaxy. J Vac Sci Technol B 27:2453–2456CrossRefGoogle Scholar
  12. 12.
    Debnath MC, Mishima TD, Santos MB et al (2012) Improved electron mobility in InSb epilayers and quantum wells on off-axis Ge (001) substrates. J Appl Phys 111:073525Google Scholar
  13. 13.
    Mishima TD, Keay JC, Goel N et al (2004) Effect of structural defects on InSb/AlxIn1−xSb quantum wells grown on GaAs(001) substrates. Physica E 20:260–263CrossRefGoogle Scholar
  14. 14.
    Shiue CC, Sah CT (1976) Studies of electron screening effects on the electron mobility in silicon surface inversion layers. Surf Sci 58:153–161CrossRefGoogle Scholar
  15. 15.
    Debnath MC, Mishima TD, Santos MB et al (2011) The role of anti-phase domains in InSb-based structures grown on on-axis and off-axis Ge substrates. AIP Conf Proc 1416:146–149CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. C. Debnath
    • 1
  • T. D. Mishima
    • 1
  • M. B. Santos
    • 1
  • K. Hossain
    • 2
  1. 1.Homer L. Dodge Department of Physics and Astronomy, and Center for Semiconductor Physics in NanostructuresUniversity of OklahomaNormanUSA
  2. 2.Amethyst Research, Inc.ArdmoreUSA

Personalised recommendations