Skip to main content
Log in

Cellular prion protein imaging analysis with aptamer-labeled Ru(bpy) 2+3 -doped silica nanoparticles

  • Article
  • Analytical Chemistry
  • Published:
Chinese Science Bulletin

Abstract

A new type of highly selective aptamer-labeled fluorescent silica nanoparticles [Apt-tris(2,2′-bipyridyl)ruthenium(II)@SiO2 NPs] were prepared through the reverse microemulsion method by using prolonged fluorescence lifetime ruthenium complexes of tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy) 2+3 ) as the source of the fluorescence for cellular prion protein imaging. Investigations showed that the newly prepared Ru(bpy) 2+3 @SiO2 NPs possessed superior advantages of strong fluorescence, low toxicity, and easy surface modification for bioconjugation. Cell imaging experiments indicated that Apt-Ru(bpy) 2+3 @SiO2 NPs had great tendency to human bone marrow neuroblastoma cells (SK-N-SH cells), since they can express large amount of prion protein on the surface of the cell, while in HeLa cells this phenomenon disappeared for the reason that HeLa cells cannot express prion proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang Q, Cao YQ, Tsien RW (2007) Quantum dots provide an optical signal specific to full collapse fusion of synaptic vesicles. Proc Natl Acad Sci USA 104:17843–17848

    Article  Google Scholar 

  2. Li X, Xue B, Li Y et al (2013) Protease-activated quantum dot probes based on fluorescence resonance energy transfer. Chin Sci Bull 58:2657–2662

    Article  Google Scholar 

  3. Chen Z, Ren X, Tang F (2013) Optical detection of acetylcholine esterase based on CdTe quantum dots. Chin Sci Bull 58:2622–2627

    Article  Google Scholar 

  4. Zhang B, Liu X, Li D et al (2008) Preparation of multi-color quantum dots and its application to immunohistochemical analysis. Chin Sci Bull 53:2077–2083

    Article  Google Scholar 

  5. Zhang H, Huang X, Li L et al (2012) Photoreductive synthesis of water-soluble fluorescent metal nanoclusters. Chem Commun 48:567–569

    Article  Google Scholar 

  6. Zhao X, Bagwe RP, Tan W (2004) Development of organic-dye-doped silica nanoparticles in a reverse microemulsion. Adv Mater 16:173–176

    Article  Google Scholar 

  7. Gagne F, Auclair J, Turcotte P et al (2008) Ecotoxicity of CdTe quantum dots to freshwater mussels: impacts on immune system, oxidative stress and genotoxicity. Aquat Toxicol 86:333–340

    Article  Google Scholar 

  8. Rieger S, Kulkarni RP, Darcy D et al (2005) Quantum dots are powerful multipurpose vital labeling agents in zebrafish embryos. Dev Dyn 234:670–681

    Article  Google Scholar 

  9. King-Heiden TC, Wiecinski PN, Mangham AN et al (2009) Quantum dot nanotoxicity assessment using the zebrafish embryo. Environ Sci Technol 43:1605–1611

    Article  Google Scholar 

  10. Xie J, Zheng Y, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131:888–889

    Article  Google Scholar 

  11. Lin YS, Tsai CP, Huang HY et al (2005) Well-ordered mesoporous silica nanoparticles as cell markers. Chem Mater 17:4570–4573

    Article  Google Scholar 

  12. Santra S, Zhang P, Wang K et al (2001) Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal Chem 73:4988–4993

    Article  Google Scholar 

  13. Wang L, Yang C, Tan W (2005) Dual-luminophore-doped silica nanoparticles for multiplexed signaling. Nano Lett 5:37–43

    Article  Google Scholar 

  14. Rossi LM, Shi L, Quina FH et al (2005) Stober synthesis of monodispersed luminescent silica nanoparticles for bioanalytical assays. Langmuir 21:4277–4280

    Article  Google Scholar 

  15. Zhang J, Fu Y, Mei Y et al (2010) Fluorescent metal nanoshell probe to detect single miRNA in lung cancer cell. Anal Chem 82:4464–4471

    Article  Google Scholar 

  16. Prusiner SB (1991) Molecular biology of prion diseases. Science 252:1515–1522

    Article  Google Scholar 

  17. Klewpatinond M, Viles JH (2007) Fragment length influences affinity for Cu2+ and Ni2+ binding to His96 or His111 of the prion protein and spectroscopic evidence for a multiple histidine binding only at low pH. Biochem J 404:393–402

    Article  Google Scholar 

  18. Westergard L, Christensen HM, Harris DA (2007) The cellular prion protein (PrPC): its physiological function and role in disease. Biochim Biophys Acta 1772:629–644

    Article  Google Scholar 

  19. Campana V, Sarnataro D, Zurzolo C (2005) The highways and byways of prion protein trafficking. Trends Cell Biol 15:102–111

    Article  Google Scholar 

  20. Zhou YW, Li CM, Liu Y et al (2013) Effective detection and cell imaging of prion protein with new prepared targetable yellow-emission silver nanoclusters. Analyst 138:873–878

    Article  Google Scholar 

  21. Shangguan D, Li Y, Tang Z et al (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci USA 103:11838–11843

    Article  Google Scholar 

  22. Bunka DH, Stockley PG (2006) Aptamers come of age—at last. Nat Rev Microbiol 4:588–596

    Article  Google Scholar 

  23. Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45:1628–1650

    Google Scholar 

  24. Xiao SJ, Hu PP, Wu XD et al (2010) Sensitive discrimination and detection of prion disease-associated isoform with a dual-aptamer strategy by developing a sandwich structure of magnetic microparticles and quantum dots. Anal Chem 82:9736–9742

    Article  Google Scholar 

  25. Xiao SJ, Hu PP, Li YF et al (2009) Aptamer-mediated turn-on fluorescence assay for prion protein based on guanine quenched fluophor. Talanta 79:1283–1286

    Article  Google Scholar 

  26. Chen LQ, Xiao SJ, Peng L et al (2010) Aptamer-based silver nanoparticles used for intracellular protein imaging and single nanoparticle spectral analysis. J Phys Chem B 114:3655–3659

    Article  Google Scholar 

  27. Javier DJ, Nitin N, Levy M et al (2008) Aptamer-targeted gold nanoparticles as molecular-specific contrast agents for reflectance imaging. Bioconj Chem 19:1309–1312

    Article  Google Scholar 

  28. Li Z, Huang P, He R et al (2010) Aptamer-conjugated dendrimer-modified quantum dots for cancer cell targeting and imaging. Mater Lett 64:375–378

    Article  Google Scholar 

  29. Medley CD, Smith JE, Tang Z et al (2008) Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal Chem 80:1067–1072

    Article  Google Scholar 

  30. Takemura K, Wang P, Vorberg I et al (2006) DNA aptamers that bind to PrPC and not PrPSc show sequence and structure specificity. Exp Biol Med 231:204–214

    Google Scholar 

  31. Zhang J, Fu Y, Lakowicz JR (2007) Emission behavior of fluorescently labeled silver nanoshell: enhanced self-quenching by metal nanostructure. J Phys Chem C 111:1955–1961

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2011CB933600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Zhi Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 719 kb)

About this article

Cite this article

Wang, W., Yan, X.L., Zhan, L. et al. Cellular prion protein imaging analysis with aptamer-labeled Ru(bpy) 2+3 -doped silica nanoparticles. Chin. Sci. Bull. 59, 147–153 (2014). https://doi.org/10.1007/s11434-013-0052-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-013-0052-1

Keywords

Navigation