Skip to main content
Log in

Influence of the amplitude ratio between two terahertz pulses on two-dimensional spectroscopy

  • Article
  • Electromagnetics
  • Published:
Chinese Science Bulletin

Abstract

The influence of the amplitude ratio between the two THz pulses on two-dimension THz spectroscopy (2DTS) has been studied theoretically via a classical method in which the expressions for the second-order nonlinearity were derived using perturbation approach, and the THz pulses were not treated as a delta function. Three types of nonlinear sources i.e., anharmonicity, nonlinear damping, and nonlinear coupling, are considered in a single mode system. The simulation results demonstrated that the amplitude ratio had a notable influence on the 2DTSs, and different sources have different influences. This study is promising for guiding future experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jewariya M, Nagai M, Tanaka K (2009) Enhancement of terahertz wave generation by cascaded χ (2) processes in LiNbO3. J Opt Soc Am B 26:A101–A106

    Article  Google Scholar 

  2. Hebling J, Almasi G, Kozma IZ (2002) Scaling up the energy of THz pulses created by optical rectification. Opt Express 10:1161–1166

    Article  Google Scholar 

  3. Yeh KL, Hoffmann MC, Helbling J et al (2007) Generation of 10 μJ ultrashort terahertz pulses by optical rectification. Appl Phys Lett 90:171121

    Article  Google Scholar 

  4. Zou S, Liu JS, Wang KJ (2012) Microwave transmission properties of metamaterials with double sets of square holes. Chin Sci Bull 57:769–3772

    Google Scholar 

  5. Bao RM, Wu SX, Zhao K et al (2013) Applying terahertz time-domain spectroscopy to probe the evolution of kerogen in close pyrolysis systems. Sci China Phy Mech Astron 56:1603–1605

    Google Scholar 

  6. Xiong W, Yao J, Li W et al (2013) Hybrid terahertz metamaterial structure formed by assembling a split ring resonator with a metal mesh. Sci China Phy Mech Astron 56:882–887

    Google Scholar 

  7. Fu WJ, Yan Y, Li XY et al (2011) Generating 0.42 THz radiation from a second harmonic gyrotron. Chin Sci Bull 56:3572–3574

    Google Scholar 

  8. Yan Y, Liu SG, Li XY et al (2009) Design and demonstration of a 0.22 THz gyrotron oscillator. Chin Sci Bull 54:1495–1499

    Google Scholar 

  9. Yang YP, Lei XY, Yue A et al (2013) Temperature-dependent THz vibrational spectra of clenbuterol hydrochloride. Sci China Phy Mech Astron 56:713–717

    Google Scholar 

  10. Liu RY, Zuo JW, Li YR et al (2012) Frequency-domain terahertz transmission spectra of Mn3 and Mn12 single-molecule magnets. Sci China Phy Mech Astron 55:1245–1248

    Google Scholar 

  11. Jiang Y, Liang M, Jin BB et al (2012) A simple Fourier transform spectrometer for terahertz applications. Chin Sci Bull 57:573–578

    Google Scholar 

  12. Kuehn W, Reimann K (2011) Two-dimensional terahertz correlation spectra of electronic excitations in semiconductor quantum wells. J Phys Chem B 115:5448–5455

    Article  Google Scholar 

  13. Tanimura Y, Mukamel S (1993) Two-dimensional femtosecond vibrational spectroscopy of liquids. J Chem Phys 99:9496

    Article  Google Scholar 

  14. Okumura K, Tanimura Y (1998) Two-dimensional THz spectroscopy of liquids: non-linear vibrational response to a series of THz laser pulses. Chem Phys Lett 295:298–304

    Article  Google Scholar 

  15. Hattori T (2010) Classical theory of two-dimensional time-domain terahertz spectroscopy. J Chem Phys 133:204503

    Article  Google Scholar 

  16. Beard MC, Turner GM (2002) Terahertz spectroscopy. J Phys Chem B 106:7146–7159

    Article  Google Scholar 

  17. Liu Y, Liu JS, Wang KJ (2011) Numerical study of threshold gain behavior for a THz random laser in a two-dimensional active disordered medium with a three-level atomic system. Chin Sci Bull 56:2664–2667

    Google Scholar 

  18. Li HQ, Liu JS, Wang KJ et al (2012) Influence of terahertz pulse width on two-dimension terahertz spectroscopy. J Mod Opt 59:923–929

    Article  Google Scholar 

  19. Tanimura Y (1998) Fifth-order two-dimensional vibrational spectroscopy of a Morse potential system in condensed phases. Chem Phys 233:217–229

    Article  Google Scholar 

  20. Tanimura Y, Mukamel S (1994) Optical stark spectroscopy of a Brownian oscillator in intense fields. J Chem Soc Jpn 63:66–67

    Google Scholar 

  21. Okumura K, Tanimura Y (1997) Two-time correlation functions of a harmonic system nonbilinearly coupled to a heat bath: spontaneous Raman spectroscopy. Phys Rev E-Stat Phys Plasmas Fluids Relat Interdiscip Top 56:2747–2750

    Google Scholar 

  22. Milne CJ, Li YL, Jasen TLC et al (2006) Fifth-order Raman spectroscopy of liquid benzene: experiment and theory. J Phys Chem B 110:19867–19876

    Article  Google Scholar 

  23. Jasne TLC, Mukamel S (2003) Semiclassical mode-coupling factorizations of coherent nonlinear optical response. J ChemPhys 119:7979

    Google Scholar 

  24. Auston DH, cheung KP, Valdmanis JA (1984) Cherenkov radiation from femtosecond optical pulses in electro-optic media. Phys Rev Lett 53:1555–1558

    Article  Google Scholar 

  25. Auston DH, Cheung KP (1985) Coherent time-domain far-infrared spectroscopy. J Opt Soc Am B 2:606–612

    Article  Google Scholar 

  26. Levenson MD, Kano S (1988) Introduction to nonlinear laser spectroscopy. Academic Press, New York

  27. Mukamel S (1999) Principles of nonlinear optical spectroscopy. Oxford University Press, New York

  28. Li YL, Huang L, Miller RJD et al (2008) Two-dimensional fifth-order Raman spectroscopy of liquid formamide: experiment and theory. J Chem Phys 128:234507

    Article  Google Scholar 

  29. Kubarych KJ, Milne CJ, Lin S et al (2002) Diffractive optics-based six-wave mixing: heterodyne detection of the full χ tensor of liquid CS. J Chem Phys 116:2016

    Article  Google Scholar 

  30. Dellago C, Mukamel S (2003) Simulation strategies and signatures of chaos in classical nonlinear response. Phys Rev E-Stat Nonlinear Soft Matter Phys 67:035205

    Article  Google Scholar 

  31. Cho M (2009) Two-dimensional optical spectroscopy. CRC Press, London

    Book  Google Scholar 

Download references

Acknowledgments

The work was supported from the National Natural Science Foundation of China (10974063, 60907045 and 61177095), Hubei Natural Science Foundations (2010CDA001 and 2012FFA074), Ph.D. Programs Foundation of Ministry of Education of China (20100142110042), and the Fundamental Research Funds for the Central Universities, HUST (2011TS001, 2012QN094 and 2012QN097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsong Liu.

About this article

Cite this article

Hu, J., Liu, J., Li, H. et al. Influence of the amplitude ratio between two terahertz pulses on two-dimensional spectroscopy. Chin. Sci. Bull. 59, 138–146 (2014). https://doi.org/10.1007/s11434-013-0042-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-013-0042-3

Keywords

Navigation