Skip to main content
Log in

Nanoscale structural and electronic evolution for increased efficiency in polymer solar cells monitored by electric scanning probe microscopy

  • Article
  • Condensed Matter Physics
  • Published:
Chinese Science Bulletin

Abstract

Control of blend morphology at multi-scale is critical for optimizing the power conversion efficiency (PCE) of plastic solar cells. To better understand the physics of photoactive layer in the organic photovoltaic devices, it is necessary to gain understanding of morphology and the corresponding electronic property. Herein we report the correlation between nanoscale structural, electric properties of bulk heterojunction (BHJ) solar cells and the annealing-induced PCE change. We demonstrate that the PCE of BHJ solar cells are dramatically improved (from 1.3 % to 4.6 %) by thermal annealing, which results from P3HT crystalline stacking and the PCBM aggregation for interpenetrated network. The similar trend for annealing-induced photovoltage and PCE evolution present as an initial increase followed by a decrease with the annealing time and temperature. The surface roughness increase slowly and then abruptly after the same inflection points observed for photovoltage and PCE. The phase images in electric force microscopy indicate the optimized P3HT and PCBM crystallization for interpenetrating network formation considering the spectroscopic results as well. From the correlation between surface photovoltage, blend morphology, and PCE, we propose a model to illustrate the film structure and its evolution under different annealing conditions. This work would benefit the better design and optimization of the morphology and local electric properties of solar cell active layers for improved PCE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yu G, Gao J, Hummelen JC et al (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270:1789–1791

    Article  Google Scholar 

  2. Günes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107:1324–1338

    Article  Google Scholar 

  3. Thompson BC, Fréchet JMJ (2008) Polymer-fullerene composite solar cells. Angew Chem Int Ed Engl 47:58–77

    Article  Google Scholar 

  4. Dennler G, Scharber MC, Brabec CJ (2009) Polymer-fullerene bulk- heterojunction solar cells. Adv Mater 21:1323–1338

    Article  Google Scholar 

  5. Chen LM, Hong Z, Li G et al (2009) Recent progress in polymer solar cells: manipulation of polymer:fullerene morphology and the formation of efficient inverted polymer solar cells. Adv Mater 21:1434–1449

    Article  Google Scholar 

  6. Halls JJM, Walsh CA, Greenham NC et al (1995) Efficient photodiodes from interpenetrating networks. Nature 376:498–500

    Article  Google Scholar 

  7. Yang X, Loos J, Veenstra SC et al (2005) Nanoscale morphology of high performance polymer solar cells. Nano Lett 5:579–583

    Article  Google Scholar 

  8. Li G, Shrotriya V, Huang J et al (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864–868

    Article  Google Scholar 

  9. Park SH, Roy A, Beaupré S et al (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100 %. Nat Photon 3:297–303

    Article  Google Scholar 

  10. Chen HY, Hou J, Zhang S et al (2009) Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photon 3:649–653

    Article  Google Scholar 

  11. Piliego C, Holcombe TW, Douglas JD et al (2010) Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. J Am Chem Soc 132:7595–7597

    Article  Google Scholar 

  12. Liang Y, Xu Z, Xia J et al (2010) For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4 %. Adv Mater 22:E135–E138

    Article  Google Scholar 

  13. He Z, Zhong C, Huang X et al (2011) Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv Mater 23:4636–4643

    Article  Google Scholar 

  14. You J, Dou L, Yoshimura K et al (2013) A polymer tandem solar cell with 10.6 % power conversion efficiency. Nat Commun 4:1446. doi:10.1038/ncomms2411

    Article  Google Scholar 

  15. Krebs FC, Gevorgyan SA, Alstrup J (2009) A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies. J Mater Chem 19:5442–5451

    Article  Google Scholar 

  16. Hoppe H, Sariciftci NS (2006) Morphology of polymer/fullerene bulk heterojunction solar cells. J Mater Chem 16:45–61

    Article  Google Scholar 

  17. Ma W, Yang C, Gong X et al (2005) Thermal stable, efficient ploymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater 15:1617–1622

    Article  Google Scholar 

  18. Peet J, Kim JY, Coates NE et al (2007) Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat Mater 6:497–500

    Article  Google Scholar 

  19. Peet J, Senatore ML, Heeger AJ et al (2009) The role of processing in the fabrication and optimization of plastic solar cells. Adv Mater 21:1521–1527

    Article  Google Scholar 

  20. Kim Y, Cook S, Tuladhar SM et al (2006) A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nat Mater 5:197–203

    Article  Google Scholar 

  21. Walker B, Tamayo AB, Dang XD et al (2009) Nanoscale phase separation and high photovoltaic efficiency in solution-processed, small-molecule bulk heterojunction solar cells. Adv Funct Mater 19:3063–3069

    Article  Google Scholar 

  22. Li HC, Rao KK, Jeng JY et al (2011) Nano-scale mechanical properties of polymer/fullerene bulk hetero-junction films and their influence on photovoltaic cells. Sol Energy Mater Sol C 95:2976–2980

    Article  Google Scholar 

  23. Mihailetchi VD, Xie H, Boer BD et al (2006) Charge transport and photocurrent generation in poly(3-hexylthiophene):methanofullerene bulk-heterojunction solar cells. Adv Funct Mater 16:699–708

    Article  Google Scholar 

  24. Quiles MC, Ferenczi T, Agostinelli T et al (2008) Morphology evolution via self-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends. Nat Mater 7:158–164

    Article  Google Scholar 

  25. Woo CH, Thompson BC, Kim BJ et al (2008) The influence of poly(3-hexylthiophene) regioregularity on fullerene-composite solar cell performance. J Am Chem Soc 130:16324–16329

    Article  Google Scholar 

  26. Li G, Yao Y, Yang H et al (2007) “Solvent annealing” effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. Adv Funct Mater 17:1636–1644

    Article  Google Scholar 

  27. Watts B, Belcher WJ, Thomsen L et al (2009) A quantitative study of PCBM diffusion during annealing of P3HT:PCBM blend films. Macromolecules 42:8392–8397

    Article  Google Scholar 

  28. Bavel SV, Sourty E, With GD et al (2009) Relation between photoactive layer thickness, 3D morphology, and device performance in P3HT/ PCBM bulk-heterojunction solar cells. Macromolecules 42:7396–7403

    Article  Google Scholar 

  29. Andersson BV, Herland A, Masich S et al (2009) Imaging of the 3D nanostructure of a polymer solar cell by electron tomography. Nano Lett 9:853–855

    Article  Google Scholar 

  30. Chiesa M, Bürgi L, Kim JS et al (2005) Correlation between surface photovoltage and blend morphology in polyfluorene-based photodiodes. Nano Lett 5:559–563

    Article  Google Scholar 

  31. Hoppe H, Glatzel T, Niggemann M et al (2005) Kelvin probe force microscopy study on conjugated polymer/fullerene bulk heterojunction organic solar cells. Nano Lett 5:269–274

    Article  Google Scholar 

  32. Palermo V, Ridolfi G, Talarico AM et al (2007) A Kelvin probe force microscopy study of the photogeneration of surface charges in all-thiophene photovoltaic blends. Adv Funct Mater 17:472–478

    Article  Google Scholar 

  33. Maturová K, Kemerink M, Wienk MM et al (2009) Scanning Kelvin probe microscopy on bulk heterojunction polymer blends. Adv Funct Mater 19:1379–1386

    Article  Google Scholar 

  34. Liscio A, Luca GD, Nolde F et al (2008) Photovoltaic charge generation visualized at the nanoscale: a proof of principle. J Am Chem Soc 130:780–781

    Article  Google Scholar 

  35. Spadafora EJ, Demadrille R, Ratier B et al (2010) Imaging the carrier photogeneration in nanoscale phase segregated organic heterojunctions by Kelvin probe force microscopy. Nano Lett 10:3337–3342

    Article  Google Scholar 

  36. Douheret O, Lutsen L, Swinnen A et al (2006) Nanoscale electrical characterization of organic photovoltaic blends by conductive atomic force microscopy. Appl Phys Lett 89:032107

    Article  Google Scholar 

  37. Dante M, Peet J, Nguyen TQ (2008) Nanoscale charge transport and internal structure of bulk heterojunction conjugated polymer/fullerene solar cells by scanning probe microscopy. J Phys Chem C 112:7241–7249

    Article  Google Scholar 

  38. Coffey DC, Reid OG, Rodovsky DB et al (2007) Mapping local photocurrents in polymer/fullerene solar cells with photoconductive atomic force microscopy. Nano Lett 7:738–744

    Article  Google Scholar 

  39. Pingree LSC, Reid OG, Ginger DS (2009) Imaging the evolution of nanoscale photocurrent collection and transport networks during annealing of polythiophene/fullerene solar cells. Nano Lett 9:2946–2952

    Article  Google Scholar 

  40. Coffey DC, Ginger DS (2006) Time-resolved electrostatic force microscopy of polymer solar cells. Nat Mater 5:735–740

    Article  Google Scholar 

  41. Verploegen E, Mondal R, Bettinger CJ et al (2010) Effects of thermal annealing upon the morphology of polymer-fullerene blends. Adv Funct Mater 20:3519–3529

    Article  Google Scholar 

  42. Chirvase D, Parisi J, Hummelen JC et al (2004) Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites. Nanotechnology 15:1317–1323

    Article  Google Scholar 

  43. Jaquith M, Muller EM, Marohn JA (2007) Time-resolved electric force microscopy of charge trapping in polycrystalline pentacene. J Phys Chem B 111:7711–7714

    Article  Google Scholar 

  44. Muller EM, Marohn JA (2005) Microscopic evidence for spatially inhomogeneous charge trapping in pentacene. Adv Mater 17:1410–1414

    Article  Google Scholar 

  45. Brown PJ, Thomas DS, Köhler A et al (2003) Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene). Phys Rev B 67:064203

    Article  Google Scholar 

  46. Zhokhavets U, Erb T, Gobsch G et al (2006) Relation between absorption and crystallinity of poly(3-hexylthiophene)/fullerene films for plastic solar cells. Chem Phys Lett 418:347–350

    Article  Google Scholar 

  47. Malik S, Nandi AK (2002) Crystallization mechanism of regioregular poly(3-alkyl thiophene)s. J Polym Sci B 40:2073–2085

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2011CB932800 and 2013CB934200), Sino-British Collaboration Program (2010DFA64680), National Natural Science Foundation of China (20973043), and Chinese Academy of Sciences (KGCX2-YW-375-3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanlian Yang, Zhixiang Wei or Chen Wang.

Additional information

Denghua Li and Han Yan have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11434_2013_40_MOESM1_ESM.doc

The electronic supplementary material is available online at csb.scichina.com and www.springerlink.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors. (DOC 15546 kb)

About this article

Cite this article

Li, D., Yan, H., Li, C. et al. Nanoscale structural and electronic evolution for increased efficiency in polymer solar cells monitored by electric scanning probe microscopy. Chin. Sci. Bull. 59, 360–368 (2014). https://doi.org/10.1007/s11434-013-0040-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-013-0040-5

Keywords

Navigation