Skip to main content
Log in

Effects of inelastic collisions on Alfvén waves in partially ionized plasmas

  • Article
  • Plasma Physics
  • Published:
Chinese Science Bulletin

Abstract

Based on a three-component description of partially ionized plasmas (i.e., electrons, ions, and neutral atoms), effects of inelastic collisions between ions (neutrals) and electrons on Alfvén waves (AWs) in a partially ionized plasma are studied. It is shown that for a fixed ionizability (\(\epsilon_i\)) or a fixed inelastic collision parameter (χ, i.e., the ratio of the inelastic to elastic collision frequency), the damping rate of AWs has a peak value round k z v A/ν in ∼1, where k z is the parallel wavenumber of AWs, v A is the Alfvén velocity, and ν in is the elastic collision frequency between ions and neutrals. On the other hand, the damping rate of AWs decreases monotonously with the ionizability \(\epsilon_i\) for a fixed inelastic collision parameter, but has a peak value when the inelastic collision parameter varies for sufficiently small ionizability (\(\epsilon_i<0.1\)). For sufficiently large ionizability (\(\epsilon_i>0.1\)), it is found that the damping rate decreases with the inelastic collision parameter. The results may help us to understand the physics of AWs in partially ionized plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vranjes J, Poedts S (2010) Features of ion acoustic waves in collisional plasmas. Phys Plasmas 17:022104

    Article  Google Scholar 

  2. Vladimir BB, Hans JF (2003) On nonideal MHD properties of the partially ionized interstellar gas. J Geophys Res 108:1110–1114

    Article  Google Scholar 

  3. Piddingtion JH (1965) Solar atmosphere heating by hydromagnetic waves. Mon Not R Astron Soc 116:314–323

    Google Scholar 

  4. De Pontieu B, Haerendel G (1998) Weakly damped Alfvén waves as drivers for spicules. Astron Astrophys 338:729–736

    Google Scholar 

  5. Vranjes J, Poedts S, Pandey BP et al (2008) Energy flux of Alfvén waves in weakly ionized plasma. Astron Astrophys 478:553–558

    Article  Google Scholar 

  6. Saito T, Kudoh T, Shibata K (2001) What determines the height of spicules? I. Alfvén-wave model and slow-wave model. Astrophys J 554:1151–1158

    Article  Google Scholar 

  7. Zhao MX, Lu JY (2012) Nonlinear dispersive scale Alfvén waves in magnetosphere–ionosphere coupling: physical processes and simulation results. Chin Sci Bull 57:1384–1392

    Article  Google Scholar 

  8. Muller G (1973) Experimental study of torsional Alfvén waves in a cylindrical partially ionized magnetoplasma. Plasma Phys 16:813–822

    Article  Google Scholar 

  9. Watts C, Hanna J (2004) Alfvén wave propagation in a partially ionized plasma. Phys Plasmas 11:1358–1365

    Article  Google Scholar 

  10. Zaqarashvili TV, Khodachenko ML, Rucker HO (2011) Magnetohydrodynamic waves in solar partially ionized plasmas: two-fluid approach. Astron Astrophys 529:A82

    Article  Google Scholar 

  11. Zaqarashvili TV, Khodachenko ML, Rucker HO (2011) Damping of Alfvén waves in solar partially ionized plasmas: effect of neutral helium in multi-fluid approach. Astron Astrophys 534:A93

    Article  Google Scholar 

  12. Conde L (2004) Ionization instability by energized electrons in weakly ionized unmagnetized plasmas. Phys Plasmas 11:1955–1959

    Article  Google Scholar 

  13. Vranjes J, Poedts S (2006) Instability of electronic modes in partially ionized plasma. Phys Lett A 348:346–354

    Article  Google Scholar 

  14. Khrapak SA, Morfill GE (2010) Ionization instability of ion-acoustic waves. Phys Plasmas 17:062111

    Article  Google Scholar 

  15. Forteza P, Oliver R, Ballester JL et al (2007) Damping of oscillation by ion-neutral collisions in a prominence plasma. Astron Astrophys 461:731–739

    Google Scholar 

  16. Forteza P, Oliver R, Ballester JL (2008) Time damping of non-adiabatic MHD waves in an umbounded partially ionised prominence plasma. Astron Astrophys 492:223–231

    Article  Google Scholar 

  17. Soler R, Oliver R, Bllester JL (2009) Magnetohydrodynamic waves in a partially ionized fliament thread. Astrophys J 669:1553–1562

    Article  Google Scholar 

  18. Khodachenko ML, Arber TD, Rucker HO et al (2004) Collision and viscous damping of MHD waves in partially ionized plasmas of the solar atmosphere. Astron Astrophys 422:1073–1084

    Article  Google Scholar 

  19. Pandey BP, Wardle M (2008) Hall magnetohydrodynamics of partially ionized plasmas. Mon Not R Astron Soc 386:2269–2278

    Article  Google Scholar 

  20. De Pontieu B, Martens PCH, Hudson HS (2001) Chromosphere damping of Alfvén waves. Astrophys J 558:859–871

    Article  Google Scholar 

  21. Leake JE, Arber TD, Khodachenko ML (2005) Collisional dissipation of Alfvén waves in a partially ionized solar chromosphere. Astron Astrophys 442:1091–1098

    Article  Google Scholar 

  22. Pandey BP, Vranjes J, Krishan V (2008) Waves in solar photosphere. Mon Not R Astron Soc 386:1635–1643

    Article  Google Scholar 

  23. Lotz W (1967) Electron-impact ionization cross-sections and ionization rate coefficients for atoms and ions. Astrophys J Suppl 14:207–238

    Article  Google Scholar 

  24. Goldston RJ, Rutherford PH (1995) Introduction to plasma physics. Institute of Physics Publishing, London, pp 144–164

    Book  Google Scholar 

  25. Verner DA, Ferland GJ (1996) Atomic data for astrophyscis I radiative recombination rate for H-like, He-like, Li-like and Na-like ions over a broad range of temperature. Astrophys J Suppl 103:467–473

    Article  Google Scholar 

  26. Aldrovandi SMV, Pequignot D (1973) Radiative and dielectronic recombination coefficients for complex ions. Astron Astrophys 25:137–140

    Google Scholar 

  27. Stevefelt J, Boulmer J, Delpech JF (1975) Collision-radiative recombination in cold plasmas. Phys Rev A 12:1246–1251

    Article  Google Scholar 

  28. Bates DR (1962) Atomic and molecular processes. Academic Press, New York, pp 245–271

    Book  Google Scholar 

  29. Helander P, Krasheninnikov SI, Catto PJ (1994) Fluid equations for a partially ionized plasma. Phys Plasmas 1:3174–3180

    Article  Google Scholar 

  30. Kopp A, Schroer A, Birk GT et al (1997) Fluid equations governing the dynamics and energetics of partially ionized dusty magnetoplasmas. Phys Plasmas 4:4414–4418

    Article  Google Scholar 

  31. Mitchner M, Kruger CH (1973) Partially ionized gases. Wiley, New York, pp 9–124

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (10973043 and 41074107), National Basic Research Program of China (2006CB806302), and Chinese Academy of Sciences (KJCX2-YW-T04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejin Wu.

About this article

Cite this article

Li, B., Chen, L. & Wu, D. Effects of inelastic collisions on Alfvén waves in partially ionized plasmas. Chin. Sci. Bull. 59, 740–746 (2014). https://doi.org/10.1007/s11434-013-0021-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-013-0021-8

Keywords