Skip to main content
Log in

Semiconductor quantum dot-doped glass as spectral converter for photovoltaic application

  • Article
  • Optics
  • Published:
Chinese Science Bulletin

Abstract

In this article, we focus on using the multiexciton generation (MEG) effect of quantum dot (QD) to realize quantum cutting of high-energy photons which will give rise to a remarkable increase of total photon number. To avoid the complicated solving of Schrödinger equation, we take approximations and develop a method for fast evaluating the quantum efficiency of MEG process. On this basis, we calculate the detailed balance limit of efficiency of Si single-junction solar cell with Si QD-doped glass placed on top of it as a spectral converter layer. It shows that the efficiency will reach 36 % which is 6 % higher than that without the converter layer. We have also explored the influence of QD radius, QD-doping density, QD, and host material, device working temperature on the efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wei G, Forrest SR (2007) Intermediate-band solar cells employing quantum dots embedded in an energy fence barrier. Nano Lett 7:218–222

    Article  Google Scholar 

  2. Marti A, Lopez N, Antolin E et al (2007) Emitter degradation in quantum dot intermediate band solar cells. Appl Phys Lett 90:233510

    Article  Google Scholar 

  3. Shen YJ, Lee YL, Kobayashi J et al (2008) Assembly of CdS quantum dots onto mesoscopic TiO2 films for quantum dot-sensitized solar cell applications. Nanotechnology 19:045602

    Article  Google Scholar 

  4. Loef R, Houtepen AJ, Talgorn E et al (2009) Study of electronic defects in CdSe quantum dots and their involvement in quantum dot solar cells. Nano Lett 9:856–859

    Article  Google Scholar 

  5. Dayal S, Kopidakis N, Olson DC et al (2010) Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency. Nano Lett 10:239

    Article  Google Scholar 

  6. Nozik AJ (2002) Quantum dot solar cells. Phys E 14:115–120

    Article  Google Scholar 

  7. Trupke T, Green MA, Wurfel PJ (2002) Improving solar cell efficiencies by down-conversion of high-energy photons. J Appl Phys 92:1668–1674

    Article  Google Scholar 

  8. Schaller RD, Klimov VI (2004) High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys Rev Lett 92:186601

    Article  Google Scholar 

  9. Klimov VI (2006) Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: implications for lasing and solar energy conversion. J Phys Chem B 110:16827–16845

    Article  Google Scholar 

  10. Schaller RD, Sykora M, Pietryga JM et al (2006) Seven excitons at a cost of one: redefining the limits for conversion efficiency of photons into charge carriers. Nano Lett 6:424–429

    Article  Google Scholar 

  11. Ellingson RJ, Beard MC, Johnson JC et al (2005) Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett 5:865–871

    Article  Google Scholar 

  12. McGuire JA, Sykora M, Joo J et al (2010) Apparent versus true carrier multiplication yields in semiconductor nanocrystals. Nano Lett 10:2049–2057

    Article  Google Scholar 

  13. Beard MC, Midgett AG, Hanna MC et al (2010) Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: implications for enhancement of solar energy conversion. Nano Lett 10:3019–3027

    Article  Google Scholar 

  14. Midgett AG, Hillhouse HW, Hughes BK et al (2010) Flowing versus static conditions for measuring multiple exciton generation in PbSe quantum dots. J Phys Chem C 114:17486–17500

    Article  Google Scholar 

  15. Witzel WM, Shabaev A, Hellberg CS et al (2010) Quantum simulation of multiple-exciton generation in a nanocrystal by a single photon. Phys Rev Lett 105:137401

    Article  Google Scholar 

  16. Rabani E, Baer R (2010) Theory of multiexciton generation in semiconductor nanocrystals. Chem Phys Lett 496:227–235

    Article  Google Scholar 

  17. Lin Z, Franceschetti A, Lusk MT (2011) Size dependence of the multiple exciton generation rate in CdSe quantum dots. ACS Nano 5:2503–2511

    Article  Google Scholar 

  18. Timmerman D, Izeddin I, Stallinga P et al (2008) Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications. Nat Photon 2:105–109

    Article  Google Scholar 

  19. Brus LE (1984) Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys 80:4403–4409

    Article  Google Scholar 

  20. Kayanuma Y (1988) Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys Rev B 38:9797–9805

    Article  Google Scholar 

  21. Schaller RD, Agranovich VM, Klimov VI (2005) High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states. Nat Phys 1:189–194

    Article  Google Scholar 

  22. Griffths DJ (2004) Introduction to quantum mechanics, 2nd edn. Prentice Hall, London

    Google Scholar 

  23. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p–n junction solar cells. J Appl Phys 32:510–519

    Article  Google Scholar 

  24. Shpaisman H, Niitsoo O, Lubomirsky I et al (2008) Can up- and down-conversion and multi-exciton generation improve photovoltaics? Sol Energy Mater Sol Cells 92:1541–1546

    Article  Google Scholar 

  25. Klimov VI (2006) Detailed-balance power conversion limits of nanocrystal-quantum-dot solar cells in the presence of carrier multiplication. Appl Phys Lett 89:23118

    Article  Google Scholar 

  26. Hanna MC, Nozik AJ (2006) Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J Appl Phys 100:074510

    Article  Google Scholar 

  27. Beard MC, Knutsen KP, Yu P et al (2007) Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett 7:2506–2512

    Article  Google Scholar 

  28. Klimov VI (2007) Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Annu Rev Phys Chem 58:635–673

    Article  Google Scholar 

  29. Trinh MT, Limpens R, De Boer WDAM et al (2012) Direct generation of multiple excitons in adjacent silicon nanocrystals revealed by induced absorption. Nat Photon 6:316–321

    Article  Google Scholar 

  30. Nozik AJ, Beard MC, Luther JM et al (2010) Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem Rev 110:6873–6890

    Article  Google Scholar 

  31. De Vos A, Desoete B (1998) On the ideal performance of solar cells with larger-than-unity quantum efficiency. Sol Energy Mater Sol Cells 51:413

    Article  Google Scholar 

  32. Landsberg PT, Badescu V (2002) Solar cell thermodynamics including multiple impact ionization and concentration of radiation. J Phys D 35:1236

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (YG 61177056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Jiang.

About this article

Cite this article

Sun, L., Jiang, C. Semiconductor quantum dot-doped glass as spectral converter for photovoltaic application. Chin. Sci. Bull. 59, 16–22 (2014). https://doi.org/10.1007/s11434-013-0017-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-013-0017-4

Keywords

Navigation