Skip to main content
Log in

Applying a dual optimization method to quantify carbon fluxes: recent progress in carbon flux inversion

  • Article
  • Atmospheric Science
  • Published:
Chinese Science Bulletin

Abstract

The widely performed Bayesian synthesis inversion method (BSIM) utilizes prior carbon flux and atmospheric carbon dioxide observations to optimize the unknown flux. The prior flux is usually computed from ecological models with large biases. The BSIM is useful in solving the problem of insufficient data, but it will increase the inaccuracies in the estimates caused by the biased prior flux. In this study, we propose a dual optimization method (DOM) to introduce a set of scaling factors as new state variables to correct for the prior flux according to information on plant functional types. The DOM estimates the scaling factors and carbon flux simultaneously by minimizing the cost function. The statistical properties of the DOM, which compare favorably with the BSIM, are provided in this article. We tested the DOM through simulation experiments which represent a true ecosystem. The results, according to the root mean squared error, show that the DOM has a higher accuracy than the BSIM in flux estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Denman KL, Brasseur G, Chidthaisong A et al (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, pp 499–587

    Google Scholar 

  2. Enting I, Trudinger C, Francey R (1994) A synthesis inversion of the concentration and δ 13C of atmospheric CO2. Tellus B Chem Phys Meteorol 47:35–52

    Article  Google Scholar 

  3. Fan S, Gloor M, Mahlman J et al (1998) A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282:442–446

    Article  Google Scholar 

  4. Bousquet P, Peylin P, Ciais P et al (2000) Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science 290:1342–1346

    Article  Google Scholar 

  5. Enting IG (2002) Estimation. In: Dessler AJ, Houghton JT, Rycroft MJ (eds) Inverse problems in atmospheric constituent transport. Cambridge University Press, New York, pp 41–60

    Chapter  Google Scholar 

  6. Gurney KR, Law RM, Denning AS et al (2002) Towards robust regional estimates of sources and sinks using atmospheric transport models. Nature 415:626–630

    Article  Google Scholar 

  7. Rodenbeck C, Houweling S, Gloor M et al (2003) CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos Chem Phys 3:1919–1964

    Article  Google Scholar 

  8. Michalak A, Bruhwiler T, Tans P (2004) A geostatistical approach to surface flux estimates of atmospheric trace gases. J Geophys Res 109:1–19

    Article  Google Scholar 

  9. Deng F, Chen JM, Ishizawa M et al (2007) Global monthly CO2 flux inversion with a focus over North America. Tellus B Chem Phys Meteorol 59:179–190

    Article  Google Scholar 

  10. Deng F, Chen JM (2011) Recent global CO2 flux inferred from atmospheric CO2 observations and its regional analyses. Biogeosci Discuss 8:3263–3281

    Google Scholar 

  11. Peters W, Jacobson AR, Sweeney C et al (2007) An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc Natl Acad Sci USA 104:18925–18930

    Article  Google Scholar 

  12. Masarie KA, Petron G, Andrews A et al (2011) Impact of CO2 measurement bias on CarbonTracker surface flux estimates. J Geophys Res 116:D17305

    Article  Google Scholar 

  13. Zupanski D, Denning AS, Uliasz M et al (2007) Carbon flux bias estimation employing maximum likelihood ensemble filter (MLEF). J Geophys Res 112:D17107

    Article  Google Scholar 

  14. Schuh AE, Denning AS, Uliasz M et al (2009) Seeing the forest through the trees: recovering large-scale carbon flux biases in the midst of small-scale variability. J Geophys Res 114:G03007

    Article  Google Scholar 

  15. Schuh AE, Denning AS, Cornin KD et al (2010) A regional high-resolution carbon flux inversion of North America for 2004. Biogeosciences 7:1625–1644

    Article  Google Scholar 

  16. Lokupitiya RS, Zupanski D, Denning AS et al (2008) Estimation of global CO2 fluxes at regional scale using the maximum likelihood ensemble filter. J Geophys Res 113:D20110

    Article  Google Scholar 

  17. Thornton PE, Law BE, Gholz HL et al (2002) Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf for forests. Agric For Meteorol 113:185–222

    Article  Google Scholar 

  18. Melillo JM, Mcguire AD (1993) Global climate change and terrestrial net primary production. Nature 363:234–240

    Article  Google Scholar 

  19. Liu J, Chen JM, Cihlar J et al (1997) A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sens Environ 62:158–175

    Article  Google Scholar 

  20. Maksyutov S, Inoue G (2000) Vertical profiles of radon and CO2 simulated by the global atmospheric transport model. In: Shimizu H, Takeuchi T, Miyabe T et al (eds) CGER supercomputer activity report, vol 7. CGER, NIES, Japan, pp 39–41

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Global Change Program of the Chinese Ministry of Science and Technology (2010 CB950703). Dr. Feng Deng of the University of Toronto provided valuable assistance in using the transport and error matrixes used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Li.

About this article

Cite this article

Zheng, H., Li, Y., Chen, J. et al. Applying a dual optimization method to quantify carbon fluxes: recent progress in carbon flux inversion. Chin. Sci. Bull. 59, 222–226 (2014). https://doi.org/10.1007/s11434-013-0016-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-013-0016-5

Keywords

Navigation