Skip to main content
Log in

Improved descriptions of collective and non-collective rotations in the superheavy nucleus 256Rf

  • Article
  • Nuclear Physics
  • Published:
Chinese Science Bulletin

Abstract

The superheavy nucleus 256Rf, where rotational band and multi-quasiparticle isomer have been observed recently, has been investigated using total Routhian surface calculations and configuration-constrained calculations of potential energy surface, with the inclusion of β 6 deformation. The experimental moment of inertial is well reproduced, indicating that the alignment is delayed due to the β 6 deformation. A K π = 5 or 8 state could form a two-quasiparticle isomer that is calculated to have higher fission barrier than the ground state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Paul ES, Twin PJ, Evans AO et al (2007) Return of collective rotation in 157Er and 158Er at ultrahigh spin. Phys Rev Lett 98:012501

    Article  Google Scholar 

  2. Cederwall B, Moradi GF, Bäck T et al (2011) Evidence for a spin-aligned neutron–proton paired phase from the level structure of 92Pd. Nature 469:68–71

    Article  Google Scholar 

  3. Walker PM, Dracoulis GD, Byrne AP et al (1994) K π = 6+ and 8 isomer decays in 172Hf and \(\Updelta K=8 E1\) transition rates. Phys Rev C 49:1718–1721

    Article  Google Scholar 

  4. Bruce AM, Byrne AP, Dracoulis GD et al (1997) Systematics of K π = 8 isomers in N = 74 nuclei. Phys Rev C 55:620–624

    Article  Google Scholar 

  5. Herzberg RD, Greenlees PT (2008) In-beam and decay spectroscopy of transfermium nuclei. Prog Part Nucl Phys 61:674–720

    Article  Google Scholar 

  6. Herzberg RD, Cox DM (2011) Spectroscopy of actinide and transactinide nuclei. Radiochim Acta 99:441–457

    Article  Google Scholar 

  7. Reiter P, Khoo TL, Lister CJ et al (1999) Ground-state band and deformation of the Z = 102 isotope 254No. Phys Rev Lett 82:509–512

    Article  Google Scholar 

  8. Eeckhaudt S, Greenlees PT, Amzal N et al (2005) Evidence for non-yrast states in 254No. Eur Phys J A 26:227–232

    Article  Google Scholar 

  9. Herzberg RD, Greenlees PT, Butler PA et al (2006) Nuclear isomers in superheavy elements as stepping stones towards the island of stability. Nature 442:896–899

    Article  Google Scholar 

  10. Tandel SK, Khoo TL, Seweryniak D et al (2006) K isomers in 254No: probing single-particle energies and pairing strengths in the heaviest nuclei. Phys Rev Lett 97:082502

    Article  Google Scholar 

  11. Clark RM, Gregorich KE, Berryman JS et al (2010) High-K multi-quasiparticle states in 254No. Phys Lett B 690:19–24

    Article  Google Scholar 

  12. Sun Y, Long GL, Al-Khudair F et al (2008) γ-Vibrational states in superheavy nuclei. Phys Rev C 77:044307

    Article  Google Scholar 

  13. Zhang ZH, Zeng JY, Zhao EG et al (2011) Particle-number conserving analysis of rotational bands in 247, 249Cm and 249Cf. Phys Rev C 83:011304 (R)

    Article  Google Scholar 

  14. Zhang ZH, He XT, Zeng JY et al (2012) Systematic investigation of the rotational bands in nuclei with Z 100 using a particle-number conserving method based on a cranked shell model. Phys Rev C 85:014324

    Article  Google Scholar 

  15. Zhao EG (2012) Recent progress in theoretical studies of nuclear magnetic moments. Chin Sci Bull 57:4394–4399

    Article  Google Scholar 

  16. Xu FR (2012) Towards the drip lines of the nuclide landscape. Chin Sci Bull 57:4689–4693

    Article  Google Scholar 

  17. Zhao EG, Wang F (2011) Recent progress in theoretical nuclear physics related to large-scale scientific facilities. Chin Sci Bull 56:3797–3802

    Article  Google Scholar 

  18. Kang XZ, Shen SF (2010) Study of the high spin states in stable nucleus 84Sr. Chin Sci Bull 55:3372

    Article  Google Scholar 

  19. Xia CJ, Sun BX, Zhao EG et al (2011) Systematic study of survival probability of excited superheavy nuclei. Sci China Phys Mech Astron 54(s1):109–113

    Article  Google Scholar 

  20. Gan ZG, Zhou XH, Huang MH et al (2011) Predictions of synthesizing element 119 and 120. Sci China Phys Mech Astron 54(s1):61–66

    Article  Google Scholar 

  21. Liu ZH, Bao JD (2009) Synthesis of superheavy nuclei with 238U target. Sci China G 52:1482–1488

    Article  Google Scholar 

  22. Liu ZH, Bao JD (2006) Optimal reactions for the synthesis of superheavy nucleus 270Hs. Sci China G 49:641–648

    Article  Google Scholar 

  23. Wang N, Liu M, Yang YX (2009) Heavy-ion fusion and scattering with Skyrme energy density functional. Sci China Ser G Phys Mech Astron 52:1554–1573

    Google Scholar 

  24. Greenlees PT, Rubert J, Piot J et al (2012) Shell-structure and pairing interaction in superheavy nuclei: rotational properties of the Z = 104 nucleus 256Rf. Phys Rev Lett 109:012501

    Article  Google Scholar 

  25. Jeppesen HB, Dragojević I, Clark RM et al (2009) Multi-quasiparticle states in 256Rf. Phys Rev C 79:031303 (R)

    Article  Google Scholar 

  26. Robinson AP, Khoo TL, Seweryniak D et al (2011) Search for a 2-quasiparticle high-K isomer in 256Rf. Phys Rev C 83:064311

    Article  Google Scholar 

  27. Patyk Z, Sobiczewski A (1991) Main deformed shells of heavy nuclei studied in a multidimensional deformation space. Phys Lett B 256:307–310

    Article  Google Scholar 

  28. Patyk Z, Sobiczewski A (1991) Ground-state properties of the heaviest nuclei analyzed in a multidimensional deformation space. Nucl Phys A 533:132–152

    Article  Google Scholar 

  29. Muntian I, Patyk Z, Sobiczewski A (2001) Are superheavy nuclei around 270Hs really deformed? Phys Lett B 500:241–246

    Article  Google Scholar 

  30. Liu HL, Xu FR, Walker PM et al (2011) Effects of high-order deformation on high-K isomers in superheavy nuclei. Phys Rev C 83:011303 (R)

    Article  Google Scholar 

  31. Liu HL, Xu FR, Walker PM (2012) Understanding the different rotational behaviors of 252No and 254No. Phys Rev C 86:011301 (R)

    Article  Google Scholar 

  32. Zhang ZH, Meng J, Zhao EG et al (2013) Rotational properties of the superheavy nucleus 256Rf and its neighboring even-even nuclei in a particle-number-conserving cranked shell model. Phys Rev C 87:054308

    Article  Google Scholar 

  33. Satuła W, Wyss R, Magierski P (1994) The Lipkin–Nogami formalism for the cranked mean field. Nucl Phys A 578:45–61

    Article  Google Scholar 

  34. Satuła W, Wyss R (1995) Extended mean field description of deformed states in neutron deficient Cd- and Sn-nuclei. Phys Scr T56:159–166

    Article  Google Scholar 

  35. Xu FR, Satuła W, Wyss R (2000) Quadrupole pairing interaction and signature inversion. Nucl Phys A 669:119–134

    Article  Google Scholar 

  36. Ćwiok S, Dudek J, Nazarewicz W et al (1987) Single-particle energies, wave functions, quadrupole moments and g-factors in an axially deformed Woods-Saxon potential with applications to the two-centre-type nuclear problems. Comput Phys Commun 46:379–399

    Article  Google Scholar 

  37. Möller P, Nix JR (1992) Nuclear pairing models. Nucl Phys A 536:20–60

    Article  Google Scholar 

  38. Sakamoto H, Kishimoto T (1990) Origin of the multipole pairing interactions. Phys Lett B 245:321–324

    Article  Google Scholar 

  39. Pradhan HC, Nogami Y, Law J (1973) Study of approximations in the nuclear pairing-force problem. Nucl Phys A 201:357–368

    Article  Google Scholar 

  40. Myers WD, Swiatecki WJ (1966) Nuclear masses and deformations. Nucl Phys 81:1–58

    Google Scholar 

  41. Strutinsky VM (1967) Shell effects in nuclear masses and deformation energies. Nucl Phys A 95:420–442

    Article  Google Scholar 

  42. Xu FR, Walker PM, Sheikh JA et al (1998) Multi-quasiparticle potential-energy surface. Phys Lett B 435:257–263

    Article  Google Scholar 

  43. Herzberg RD, Amzal N, Becker F, et al. (2001) Spectroscopy of transfermium nuclei: 102 252No. Phys Rev C 65:014303

    Article  Google Scholar 

  44. Evaluated nuclear structure data file. http://www.nndc.bnl.gov/ensdf/

  45. Xu FR, Zhao EG, Wyss R et al (2004) Enhanced stability of superheavy nuclei due to high-spin isomerism. Phys Rev Lett 92:252501

    Article  Google Scholar 

  46. Walker PM, Xu FR, Liu HL et al (2012) On the possibility of enhanced fission stability for broken-pair excitations. J Phys G 39:105106

    Article  Google Scholar 

  47. Liu HL, Xu FR, Sun Y et al (2011) On the stability of high-K isomers in the second well of actinide nuclei. Eur Phys J A 47:135

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (11205120, 11235001) and the National Key Basic Research Program of China (2013CB834400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Liu.

About this article

Cite this article

Liu, H., Xu, F. Improved descriptions of collective and non-collective rotations in the superheavy nucleus 256Rf. Chin. Sci. Bull. 59, 11–15 (2014). https://doi.org/10.1007/s11434-013-0004-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-013-0004-9

Keywords

Navigation