Advertisement

Chinese Science Bulletin

, Volume 58, Issue 10, pp 1156–1161 | Cite as

Photocatalytic degradation of microcystin-LR using TiO2 nanotubes under irradiation with UV and natural sunlight

  • YaLing SuEmail author
  • YiRong Deng
  • Lu Zhao
  • YingXun Du
Open Access
Article Physical Chemistry

Abstract

In order to investigate the catalytic performance of anodic TiO2 nanotubes and their practical application in the treatment of refractory microcystins (MCs) in natural-water samples, TiO2 nanotubes of diameter of 50–80 nm were fabricated by anodization in C2H2O4·2H2O containing NH4F. Under irradiation with natural sunlight, MC-LR was totally degraded after 1 d using the anodic TiO2 nanotubes. In contrast, the removal efficiency without TiO2 nanotubes was as low as 47.7% within 20 d. In addition, a mixture of anatase and rutile TiO2 gave higher photocatalytic activity than the single phase did. The pH also influenced the adsorption capacity of the TiO2 nanotubes. The order of MC-LR degradation efficiencies at different pH values was 3.5 > 8.0 > 10.0. After five repeated experiments on the degradation of MC-LR for 7 h, the degradation efficiency was still stable.

Keywords

TiO2 nanotube microcystin photocatalysis sunlight irradiation 

References

  1. 1.
    Linsebigler A L, Lu G Q, Yates J T Jr. Photocatalysis on TiO2 surfaces: Principles mechanisms and selected results. Chem Rev, 1995, 95: 735–758CrossRefGoogle Scholar
  2. 2.
    Robertson P K J. Semiconductor photocatalysis: An environmentally acceptable alternative production technique and effluent treatment process. J Clean Prod, 1996, 3–4: 203–212CrossRefGoogle Scholar
  3. 3.
    Liu I, Lawton L A, Cornish B, et al. Mechanistic and toxicity studies of the photocatalytic oxidation of microcystin-LR. J Photochem Photobiol A-Chem, 2002, 148: 349–354CrossRefGoogle Scholar
  4. 4.
    Liu I, Lawton L A, Robertson P K J. Mechanistic studies of the photocatalytic oxidation of microcystin-LR: An investigation of byproducts of the decomposition process. Environ Sci Technol, 2003, 37: 3214–3219CrossRefGoogle Scholar
  5. 5.
    Antoniou M G, Shoemaker J A, De la Cruz A A, et al. LC/MS/MS structure elucidation of reaction intermediates formed during the TiO2 photocatalysis of microcystin-LR. Toxicon, 2008, 51: 1103–1118CrossRefGoogle Scholar
  6. 6.
    Sopyan I, Watanabe M, Murasawa S, et al. An efficient TiO2 thin-film photocatalyst: Photocatalytic properties in gas-phase acetaldehyde degradation. J Photochem Photobiol A-Chem, 1996, 98: 79–86CrossRefGoogle Scholar
  7. 7.
    Quan X, Yang S G, Ruan X L, et al. Preparation of titania nanotubes and their environmental application as electrode. Environ Sci Technol, 2005, 39: 3770–3775CrossRefGoogle Scholar
  8. 8.
    Macak J M, Tsuchiya H, Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew Chem Int Ed, 2005, 44: 2100–2102CrossRefGoogle Scholar
  9. 9.
    Liu N, Lee K Y, Schmuki P. Small diameter TiO2 nanotubes vs. nanopores in dye sensitized solar cells. Electrochem Commun, 2012, 15: 1–4CrossRefGoogle Scholar
  10. 10.
    Hahn R, Macak J M, Schmuki P. Rapid anodic growth of TiO2 and WO3 nanotubes in fluoride free electrolytes. Electrochem Commun, 2007, 9: 947–952CrossRefGoogle Scholar
  11. 11.
    Su Y L, Zhang X W, Han S, et al. F-B-codoping of anodized TiO2 nanotubes using chemical vapor deposition. Electrochem Commun, 2007, 9: 2291–2298CrossRefGoogle Scholar
  12. 12.
    Falconer I R, Burch M D, Steffensen D A, et al. Toxicity of the blue-alga (cyannobacteriun) Micocystis aeruginosa in drinking water to growing pigs, as an animal model for human injury and risk assessment. Environ Toxicol Water Qual, 1994, 9: 131–139CrossRefGoogle Scholar
  13. 13.
    Keijola A M, Himberg K, Esala A L, et al. Removal of cyanobacterial toxins in water treatment processes: Laboratory and pilot-scale experiments. Toxic Assess, 1988, 3: 643–656CrossRefGoogle Scholar
  14. 14.
    Pérez S, Aga D S. Liquid chromatography tandem mass spectrometric analysis and environmental fate of microcystins in water. Trac-Trends Anal Chem, 2005, 24: 658–670CrossRefGoogle Scholar
  15. 15.
    Edwards C, Lawton L A, Coyle S M, et al. Laboratory-scale purification of microcystins using flash chromatography and reversed-phase high-performance liquid chromatography. J Chromatogr A, 1996, 734: 163–173CrossRefGoogle Scholar
  16. 16.
    Su Y L, Zhang X W, Zhou M H, et al. Preparation of high efficient photoelectrode of N-F-codoped TiO2 nanotubes. J Photochem Photobiol A-Chem, 2008, 194: 152–160CrossRefGoogle Scholar
  17. 17.
    Watanabe T A, Nakajima R, Wang R, et al. Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films, 1999, 351: 260–263CrossRefGoogle Scholar
  18. 18.
    Vittadni A, Selloni A, Rotzinger F P, et al. Structure and energetics of water adsorbed at TiO2 anatase (101) and (001) surfaces. Phys Rev Lett, 1998, 81: 2954–2957CrossRefGoogle Scholar
  19. 19.
    Ruan C M, Paulose M, Varghese O K, et al. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. J Phys Chem B, 2005, 109: 15754–15759CrossRefGoogle Scholar
  20. 20.
    Zhuang H F, Lin C J, Lai Y K, et al. Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity. Environ Sci Technol, 2007, 41: 4735–4740CrossRefGoogle Scholar
  21. 21.
    Berger S, Tsuchiya H, Ghicov A, et al. High photocurrent conversion efficiency in self-organized porous WO3. Appl Phys Lett, 2006, 88: 203119–203121CrossRefGoogle Scholar
  22. 22.
    Mor G K, Shankar K, Paulose M, et al. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett, 2006, 6: 215–218CrossRefGoogle Scholar
  23. 23.
    Park J H, Kim S, Bard A J. Novel carbon-doped TiO2 nano-tube arrays with high aspect ratios for efficient solar water splitting. Nano Lett, 2006, 6: 24–28CrossRefGoogle Scholar
  24. 24.
    Sclafani A, Palmisano L, Schiavello M. Difference of the preparation methods of TiO2 on the photocatalytic degradation of phenol in aqueous dispersion. J Phys Chem, 1990, 94: 829–832CrossRefGoogle Scholar
  25. 25.
    Bendavid A, Martin P J, Jamting A, et al. Structural and optical properties of titanium oxide thin films deposited by filtered arc deposition. Thin Solid Films, 1999, 356: 6–11CrossRefGoogle Scholar
  26. 26.
    Bacsa R R, Kiwi J. Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid. Appl Catal B-Environ, 1998, 16: 19–29CrossRefGoogle Scholar
  27. 27.
    Van der Meulen T, Mattson A, Österlund L. A comparative study of the photocatalytic oxidation of propane on anatase, rutile, and mixed-phase anatase-rutile TiO2 nanoparticles: Role of surface intermediates. J Catal, 2007, 251: 131–144CrossRefGoogle Scholar
  28. 28.
    Antoniou M G. Mechanistic studies on the degradation of cyanobacterial toxins and other nitrogen containing compounds with hydroxyl and sulfate radical based advanced oxidation technologies. Doctor Dissertation. Cincinnati: University of Cincinati, 2010Google Scholar
  29. 29.
    Lawton L A, Robertson P K J, Cornish B J P A, et al. Processes influencing surface interaction and photocatalytic destruction of microcystins on titanium dioxide photocatalysts. J Catal, 2003, 213: 109–113CrossRefGoogle Scholar
  30. 30.
    Ward M D, White J R, Bard A J. Electrochemical investigation of the energetics of particulate titanium dioxide photocatalysts. The methyl viologen-acetate system. J Am Chem Soc, 1983, 105: 27–31CrossRefGoogle Scholar
  31. 31.
    Schwarz J A. Methods for preparation of catalytic materials. Chem Rev, 1995, 95: 477–510CrossRefGoogle Scholar
  32. 32.
    Harada K, Tsuji K, Watanabe M F, et al. Stability of microcystins from cyanobacteria-III. Effect of pH and temperature. Phycologia, 1996, 35: 83–88CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
  2. 2.Guangdong Provincial Academy of Environmental ScienceGuangzhouChina

Personalised recommendations