Skip to main content

Solar influenced late Holocene temperature changes on the northern Tibetan Plateau


Considerable efforts have been made to extend temperature records beyond the instrumental period through proxy reconstructions, in order to further understand the mechanisms of past climate variability. Yet, the global coverage of existing temperature records is still limited, especially for some key regions like the Tibetan Plateau and for earlier times including the Medieval Warm Period (MWP). Here we present decadally-resolved, alkenone-based, temperature records from two lakes on the northern Tibetan Plateau. Characterized by marked temperature variability, our records provide evidence that temperatures during the MWP were slightly higher than the modern period in this region. Further, our temperature reconstructions, within age uncertainty, can be well correlated with solar irradiance changes, suggesting a possible link between solar forcing and natural climate variability, at least on the northern Tibetan Plateau.


  1. 1

    Buntgen U, Tggel W, Nicolussi K, et al. 2500 years of European climate variability and human susceptibility. Science, 2011, 331: 578–582

    Article  Google Scholar 

  2. 2

    Crowley T J. Causes of climate change over the past 1000 years. Science, 2000, 289: 270–277

    Article  Google Scholar 

  3. 3

    Dai Y, Zhang Y, Ge J Y. Decadal-scale variability of warm season temperature in Beijing over the past 2650 years. Chin Sci Bull, 2011, 56: 2366–2370

    Article  Google Scholar 

  4. 4

    Esper J, Cook E R, Schweingruber F H. Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science, 2002, 295: 2250–2253

    Article  Google Scholar 

  5. 5

    Ge Q S, Zhang X Z, Hao Z X, et al. Rates of temperature change in China during the past 2000 years. Sci China Earth Sci, 2011, 54: 1627–16

    Google Scholar 

  6. 6

    Liu Y, Cai Q F, Song H M, et al. Amplitudes, rates, periodicities and causes of temperature variations in the past 2485 years and future trends over the central-eastern Tibetan Plateau. Chin Sci Bull, 2011, 56: 2986–2994

    Article  Google Scholar 

  7. 7

    Mann M E, Jones P D. Global surface temperatures over the past two millennia. Geophys Res Lett, 2003, 30: 1820

    Article  Google Scholar 

  8. 8

    Mann M E, Zhang Z, Rutherford S, et al. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science, 2009, 326: 1256–1260

    Article  Google Scholar 

  9. 9

    Moberg A, Sonechkin D M, Holmgren K, et al. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature, 2005, 433: 613–617

    Article  Google Scholar 

  10. 10

    Oppo D W, Rosenthal Y, Linsley B K. 2000-year-long temperature and hydrology reconstructions from the Indo-Pacific warm pool. Nature, 2009, 460: 1113–1116

    Article  Google Scholar 

  11. 11

    Qiang M R, Chen F H, Zhang J W, et al. Climatic changes documented by stable isotopes of sedimentary carbonate in Lake Sugan, northeastern Tibetan Plateau of China, since 2 ka BP (in Chinese). Chin Sci Bull (Chin Ver), 2005, 50: 1930–1939

    Article  Google Scholar 

  12. 12

    Yang B, Achim B, Shi Y F. Late Holocene temperature fluctuations on the Tibetan Plateau. Quat Sci Rev, 2003, 22: 2335–2344

    Article  Google Scholar 

  13. 13

    Zhu H F, Zheng Y H, Shao X M, et al. Millennial temperature reconstruction based on tree-ring widths of Qilian juniper from Wulan, Qinghai Province, China. Chin Sci Bull, 2008, 53: 3914–3920

    Article  Google Scholar 

  14. 14

    Magny M, Arnaud F, Holzhauser H, et al. Solar and proxy-sensitivity imprints on paleohydrological records for the last millennium in west-central Europe. Quat Res, 2010, 73: 173–179

    Article  Google Scholar 

  15. 15

    Shindell D T, Schmidt G A, Mann M E, et al. Solar forcing of regional climate change during the Maunder Minimum. Science, 2001, 294: 2149–2152

    Article  Google Scholar 

  16. 16

    Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian monsoon: links to solar changes and north Atlantic climate. Science, 2005, 308: 854–857

    Article  Google Scholar 

  17. 17

    Waple A M, Mann M E, Bradley R S. Long-term patterns of solar irradiance forcing in model experiments and proxy based surface temperature reconstructions. Clim Dyn, 2002, 18: 563–578

    Google Scholar 

  18. 18

    Zhang P Z, Cheng H, Edwards R L, et al. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science, 2008, 322: 940–942

    Article  Google Scholar 

  19. 19

    Zhao C, Yu Z C, Zhao Y, et al. Possible orographic and solar controls of Late Holocene centennial-scale moisture oscillations in the northeastern Tibetan Plateau. Geophys Res Lett, 2009, 36: L21705

    Article  Google Scholar 

  20. 20

    Jones P D, Briffa K R, Osborn T J, et al. High-resolution palaeoclimatology of the last millennium: A review of current status and future prospects. The Holocene, 2009, 19: 3–49

    Article  Google Scholar 

  21. 21

    von Storch H, Zorita E, Jones J M, et al. Reconstructing past climate from noisy data. Science, 2004, 306: 679–682

    Article  Google Scholar 

  22. 22

    Chen F H, Chen J H, Holmes J, et al. Moisture changes over the last millennium in arid central Asia: A review, synthesis and comparison with monsoon region. Quat Sci Rev, 2010, 29: 1055–1068

    Article  Google Scholar 

  23. 23

    Ding Q H, Wang B. Circumglobal teleconnection in the Northern Hemisphere summer. J Clim, 2005, 18: 3483–3505

    Article  Google Scholar 

  24. 24

    Ge Q S, Zheng J Y, Hao Z X, et al. Temperature variation through 2000 years in China: An uncertainty analysis of reconstruction and regional difference. Geophys Res Lett, 2010, 37: L03703

    Article  Google Scholar 

  25. 25

    Yang B, Tang L Y, Li C H, et al. An ice-core record of vegetation and climate changes in the central Tibetan Plateau during the last 550 years. Chin Sci Bull, 2010, 55: 1167–1177

    Google Scholar 

  26. 26

    Zhang D E. Winter temperature changes during the last 500 years in south China (in Chinese). Chin Sci Bull (Chin Ver), 1980, 25: 497–500

    Google Scholar 

  27. 27

    Tian L, Masson-Delmotte V, Stievenard M, et al. Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes. J Geophys Res, 2001, 106: 28081–28088

    Article  Google Scholar 

  28. 28

    Stuiver M, Reimer P J. Extended 14C data-base and revised Calib 3.0 14C age calibration program. Radiocarbon, 1993, 35: 215–230

    Google Scholar 

  29. 29

    Hou J Z, D’Andrea W J, Liu Z H. The influence of 14C reservoir age on interpretation of paleolimnological records fron the Tibetan Plateau. Quat Sci Rev, 2012, 48: 67–79

    Article  Google Scholar 

  30. 30

    Liu W G, Liu Z H, Wang H Y, et al. Salinity control on long-chain alkenone distributions in lake surface waters and sediments of the northern Qinghai-Tibetan Plateau, China. Geochim Cosmochim Acta, 2011, 75: 1693–1703

    Article  Google Scholar 

  31. 31

    Prahl F G, Muehlhausen L A, Zahnle D L. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochim Cosmochim Acta, 1998, 52: 2303–2310

    Article  Google Scholar 

  32. 32

    Sun Q, Chu G Q, Liu G X, et al. Calibration of alkenone unsaturation index with growth temperature for a lacustrine species, Chrysotila lamellosa (Haptophyceae). Org Geochem, 2007, 38: 1226–1234

    Article  Google Scholar 

  33. 33

    Lamb H H. Climatic History and The Future. Princeton: Princeton University Press, 1985

    Google Scholar 

  34. 34

    Liu Z H, Henderson A C G, Huang Y S. Alkenone-based reconstruction of Late-Holocene surface temperature and salinity changes in Lake Qinghai, China. Geophys Res Lett, 2006, 33: L09707

    Article  Google Scholar 

  35. 35

    Liu Y, An Z S, Linderholm H W, et al. Annual temperatures during the last 2485 years in the mid-eastern tibetan plateau inferred from tree rings. Sci China Ser D-Earth Sci, 2009, 52: 348–359

    Article  Google Scholar 

  36. 36

    Brassell S C, Eglinton G, Marlowe I T, et al. Molecular stratigraphy: A new tool for climatic assessment. Nature, 1986, 320: 129–133

    Article  Google Scholar 

  37. 37

    Chu G Q, Sun Q, Li S Q, et al. Long-chain alkenone distributions and temperature dependence in lacustrine surface sediments from China. Geochim Cosmochim Acta, 2005, 69: 4985–5003

    Article  Google Scholar 

  38. 38

    D’Andrea W J, Huang Y S. Long chain alkenones in Greenland lake sediments: Low delta C-13 values and exceptional abundance. Org Geochem, 2005, 36: 1234–1241

    Article  Google Scholar 

  39. 39

    D’Andrea W J, Huang Y S, Fritz S C, et al. Abrupt Holocene climate change as an important factor for human migration in West Greenland. Proc Natl Acad Sci USA, 2011, 108: 9765–9769

    Article  Google Scholar 

  40. 40

    Liu W G, Liu Z H, Fu M Y, et al. Distribution of the C37 tetra-unsaturated alkenone in Lake Qinghai, China: A potential lake salinity indicator. Geochim Cosmochim Acta, 2008, 72: 988–997

    Article  Google Scholar 

  41. 41

    Pearson E J, Juggins S, Farrimond P. Distribution and significance of long-chain alkenones as salinity and temperature indicators in Spanish saline lake sediments. Geochim Cosmochim Acta, 2008, 72: 4035–4046

    Article  Google Scholar 

  42. 42

    Sheng G Y, Cai K Q, Yang X X, et al. Long-chain alkenones in Hotong Qagan Nur Lake sediments and its paleoclimatic implications. Chin Sci Bull, 1999, 44: 259–263

    Article  Google Scholar 

  43. 43

    Toney J L, Huang Y S, Fritz S C, et al. Climatic and environmental controls on the occurrence and distributions of long chain alkenones in lakes of the interior United States. Geochim Cosmochim Acta, 2010, 74: 1563–1578

    Article  Google Scholar 

  44. 44

    Toney J L, Theroux S, Andersen R A, et al. Culturing of the first 37:4 predominant lacustrine haptophyte: Geochemical, biochemical, and genetic implications. Geochim Cosmochim Acta, 2012, 78: 51–64

    Article  Google Scholar 

  45. 45

    Zink K G, Leythaeuser D, Melkonian M, et al. Temperature dependency of long-chain alkenone distributions in Recent to fossil limnic sediments and in lake waters. Geochim Cosmochim Acta, 2011, 65: 253–265

    Article  Google Scholar 

  46. 46

    Kang X C, Grumlich L J, Sheppard P R. A 1835-yr tree-ring chronology and its preliminary analysis in Dulan region, Qinghai (in Chinese). Chin Sci Bull (Chin Ver), 1997, 42: 1089–1091

    Google Scholar 

  47. 47

    Kobashi T, Kawamura K, Severinghaus J P, et al. High variability of Greenland surface temperature over the past 4000 years estimated from trapped air in an ice core, Geophys Res Lett, 2011, 38: L21501

    Article  Google Scholar 

  48. 48

    Trouet V, Esper J, Graham N E, et al. Persistent positive north atlantic oscillation mode dominated the medieval climate anomaly. Science, 2009, 324: 78–80

    Article  Google Scholar 

  49. 49

    Yan H, Sun L G, Wang Y H, et al. A record of the Southern Oscillation Index for the past 2000 years from precipitation proxies. Nat Geosci, 2011, 4: 611–614

    Article  Google Scholar 

  50. 50

    Mann M E, Cane M A, Zebiak, et al. Volcanic and solar forcing of the tropical Pacific over the past 1000 years. J Clim, 2005, 18: 447–456

    Article  Google Scholar 

  51. 51

    Bard E, Raisbeck G, Yiou F, et al. Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus B, 2000, 52: 985–992

    Article  Google Scholar 

  52. 52

    Reimer P J, Baillie M G L, Bard E, et al. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal ka BP. Radiocarbon, 2004, 46: 1029–1058

    Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to WeiGuo Liu or ZhongHui Liu.

Additional information

This article is published with open access at

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

He, Y., Liu, W., Zhao, C. et al. Solar influenced late Holocene temperature changes on the northern Tibetan Plateau. Chin. Sci. Bull. 58, 1053–1059 (2013).

Download citation


  • northern Tibetan Plateau
  • alkenones
  • U k′37
  • late Holocene