Chinese Science Bulletin

, Volume 58, Issue 4–5, pp 545–551 | Cite as

A method for distinguishing and linking turbulent entrainment mixing and collision-coalescence in stratocumulus clouds

  • ChunSong LuEmail author
  • YanGang Liu
  • ShengJie Niu
Open Access
Article Atmospheric Science


This paper presents a method to distinguish and link inhomogeneous mixing with subsequent ascent and collision-coalescence. Three stratocumulus clouds analyzed were collected over the U.S. Department of Energy’s Atmospheric Radiation Measurement Southern Great Plains site during the March 2000 cloud Intensive Observation Period. The criteria are presented to distinguish the two processes. Inhomogeneous mixing with subsequent ascent is identified if cloud along an aircraft horizontal leg is non-drizzling and the relationship between cloud volume-mean radius and liquid water content is negative; in contrast, drizzling and positive relationship between the above two properties are the criteria for collision-coalescence. To link the two processes, threshold function, the possibility of occurrence of collision-coalescence, is employed; the big droplets generated during the inhomogeneous mixing with subsequent ascent increase the threshold function, initiates collision-coalescence and produces drizzle drops. To the authors’ knowledge, this is the first study on distinguishing and linking inhomogeneous mixing with subsequent ascent and collision-coalescence based on observational data.


entrainment-mixing process collision-coalescence stratocumulus warm rain initiation drizzle 


  1. 1.
    Koo C-C. Recent investigations in the theory of the formation of the cloud-drop spectra (in Chinese). Acta Meteorol Sin, 1962, 32: 267–284Google Scholar
  2. 2.
    Zhou X. Statistical theory of microphysical mechanisms in warm cloud precipitation (in Chinese). Acta Meteorol Sin, 1963, 33: 97–107Google Scholar
  3. 3.
    Devenish B J, Bartello P, Brenguier J L, et al. Droplet growth in warm turbulent clouds. Q J Roy Meteor Soc, 2012, 138: 1401–1429CrossRefGoogle Scholar
  4. 4.
    Rogers R R, Yau M K. A Short Course in Cloud Physics. 3rd ed. Burlington, MA, USA: Butterworth Heinemann, 1989Google Scholar
  5. 5.
    Yum S. Cloud droplet spectral broadening in warm clouds: An observational and model study. Dissertation for the Doctoral Degree. Nevada: University of Nevada, 1998Google Scholar
  6. 6.
    Martin G M, Johnson D W, Spice A. The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J Atmos Sci, 1994, 51: 1823–1842CrossRefGoogle Scholar
  7. 7.
    Cerni T A. Determination of the size and concentration of cloud drops with an FSSP. J Appl Meteorol, 1983, 22: 1346–1355CrossRefGoogle Scholar
  8. 8.
    Schmidt S, Lehmann K, Wendisch M. Minimizing instrumental broadening of the drop size distribution with the M-Fast-FSSP. J Atmos Ocean Tech, 2004, 21: 1855–1867CrossRefGoogle Scholar
  9. 9.
    Brenguier J L, Chaumat L. Droplet spectra broadening in cumulus clouds. Part I: Broadening in adiabatic cores. J Atmos Sci, 2001, 58: 628–641Google Scholar
  10. 10.
    Laird N F, Ochs H T, Rauber R M, et al. Initial precipitation formation in warm Florida cumulus. J Atmos Sci, 2000, 57: 3740–3751CrossRefGoogle Scholar
  11. 11.
    Lehmann K, Siebert H, Shaw R A. Homogeneous and inhomogeneous mixing in cumulus clouds: Dependence on local turbulence structure. J Atmos Sci, 2009, 66: 3641–3659CrossRefGoogle Scholar
  12. 12.
    Herckes P, Chang H, Lee T, et al. Air pollution processing by radiation fogs. Water Air Soil Pollut, 2007, 181: 65–75CrossRefGoogle Scholar
  13. 13.
    Beard K V, Ochs H T. Warm-rain initiation: An overview of microphysical mechanisms. J Appl Meteorol, 1993, 32: 608–625CrossRefGoogle Scholar
  14. 14.
    Vaillancourt P A, Yau M K, Bartello P, et al. Microscopic approach to cloud droplet growth by condensation. Part II: Turbulence, clustering, and condensational growth. J Atmos Sci, 2002, 59: 3421–3435CrossRefGoogle Scholar
  15. 15.
    McGraw R, Liu Y. Brownian drift-diffusion model for evolution of droplet size distributions in turbulent clouds. Geophys Res Lett, 2006, 33: L03802CrossRefGoogle Scholar
  16. 16.
    Wen C-S. The effects of the correlative time of the fluctuating force field on the random growth of cloud droplets. Sci Sin, 1966, 15: 870–879Google Scholar
  17. 17.
    Shaw R A. Particle-turbulence interactions in atmospheric clouds. Annu Rev Fluid Mech, 2003, 35: 183–227CrossRefGoogle Scholar
  18. 18.
    Johnson D B. The role of giant and ultragiant aerosol particles in warm rain initiation. J Atmos Sci, 1982, 39: 448–460CrossRefGoogle Scholar
  19. 19.
    Feingold G, Cotton W R, Kreidenweis S M, et al. The impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: Implications for cloud radiative properties. J Atmos Sci, 1999, 56: 4100–4117CrossRefGoogle Scholar
  20. 20.
    Andrejczuk M, Grabowski W W, Malinowski S P, et al. Numerical simulation of cloud-clear air interfacial mixing: Homogeneous versus inhomogeneous mixing. J Atmos Sci, 2009, 66: 2493–2500CrossRefGoogle Scholar
  21. 21.
    Lasher-Trapp S G, Cooper W A, Blyth A M. Broadening of droplet size distributions from entrainment and mixing in a cumulus cloud. Q J Roy Meteor Soc, 2005, 131: 195–220CrossRefGoogle Scholar
  22. 22.
    Krueger S, Su C, McMurtry P. Modeling entrainment and finescale mixing in cumulus clouds. J Atmos Sci, 1997, 54: 2697–2712CrossRefGoogle Scholar
  23. 23.
    Wang X, Xue H, Fang W, et al. A study of shallow cumulus cloud droplet dispersion by large eddy simulations. Acta Meteorol Sin, 2011, 25: 166–175CrossRefGoogle Scholar
  24. 24.
    Kumar B, Schumacher J, Shaw R. Cloud microphysical effects of turbulent mixing and entrainment. Theor Comp Fluid Dyn, 2012: 1-16Google Scholar
  25. 25.
    Jensen J B, Baker M B. A simple model of droplet spectral evolution during turbulent mixing. J Atmos Sci, 1989, 46: 2812–2829CrossRefGoogle Scholar
  26. 26.
    Burnet F, Brenguier J L. Observational study of the entrainment-mixing process in warm convective clouds. J Atmos Sci, 2007, 64: 1995–2011CrossRefGoogle Scholar
  27. 27.
    Gerber H E, Frick G M, Jensen J B, et al. Entrainment, mixing, and microphysics in trade-wind cumulus. J Meteorol Soc Jpn, 2008, 86: 87–106CrossRefGoogle Scholar
  28. 28.
    Haman K E, Malinowski S P, Kurowski M J, et al. Small scale mixing processes at the top of a marine stratocumulus—A case study. Q J Roy Meteor Soc, 2007, 133: 213–226CrossRefGoogle Scholar
  29. 29.
    Baker M B, Corbin R G, Latham J. The influence of entrainment on the evolution of cloud droplet spectra: I. A model of inhomogeneous mixing. Q J Roy Meteor Soc, 1980, 106: 581–598CrossRefGoogle Scholar
  30. 30.
    Liu Y, Daum P H, McGraw R. Size truncation effect, threshold behavior, and a new type of autoconversion parameterization. Geophys Res Lett, 2005, 32: L11811CrossRefGoogle Scholar
  31. 31.
    Liu Y, Daum P H, McGraw R, et al. Generalized threshold function accounting for effect of relative dispersion on threshold behavior of autoconversion process. Geophys Res Lett, 2006, 33: L11804CrossRefGoogle Scholar
  32. 32.
    Baumgardner D, Strapp W, Dye J. Evaluation of the forward scattering spectrometer probe. Part II: Corrections for coincidence and dead-time losses. J Atmos Ocean Tech, 1985, 2: 626–632CrossRefGoogle Scholar
  33. 33.
    Dye J, Baumgardner D. Evaluation of the forward scattering spectrometer probe. Part I: Electronic and optical studies. J Atmos Ocean Tech, 1984, 1: 329–344CrossRefGoogle Scholar
  34. 34.
    Baumgardner D, Spowart M. Evaluation of the forward scattering spectrometer probe. Part III: Time response and laser inhomogeneity limitations. J Atmos Ocean Tech, 1990, 7: 666–672CrossRefGoogle Scholar
  35. 35.
    Baumgardner D. Corrections for the response times of particle measuring probes. In: American Meteorological Society, World Meteorological Organization, eds. Proceedings of the 6th Symposium on Meteorological Observations and Instrumentation. New Orleans, USA. 1987. 148–151Google Scholar
  36. 36.
    Deng Z, Zhao C, Zhang Q, et al. Statistical analysis of microphysical properties and the parameterization of effective radius of warm clouds in Beijing area. Atmos Res, 2009, 93: 888–896CrossRefGoogle Scholar
  37. 37.
    Zhang Q, Quan J, Tie X, et al. Impact of aerosol particles on cloud formation: Aircraft measurements in China. Atmos Environ, 2011, 45: 665–672CrossRefGoogle Scholar
  38. 38.
    Lu C, Liu Y, Niu S. Examination of turbulent entrainment-mixing mechanisms using a combined approach. J Geophys Res, 2011, 116: D20207CrossRefGoogle Scholar
  39. 39.
    Baker M B, Latham J. The evolution of droplet spectra and the rate of production of embryonic raindrops in small cumulus clouds. J Atmos Sci, 1979, 36: 1612–1615CrossRefGoogle Scholar
  40. 40.
    Wang J, Daum P H, Yum S S, et al. Observations of marine stratocumulus microphysics and implications for processes controlling droplet spectra: Results from the Marine Stratus/Stratocumulus Experiment. J Geophys Res, 2009, 114: D18210CrossRefGoogle Scholar
  41. 41.
    Siebert H, Franke H, Lehmann K, et al. Probing finescale dynamics and microphysics of clouds with helicopter-borne measurements. B Am Meteorol Soc, 2006, 87: 1727–1738CrossRefGoogle Scholar
  42. 42.
    Wallace J, Hobbs P. Atmospheric Science: An Introductory Survey. 2nd ed. California: Academic Press, 2006Google Scholar
  43. 43.
    Liu Y, Daum P H, McGraw R. An analytical expression for predicting the critical radius in the autoconversion parameterization. Geophys Res Lett, 2004, 31: L06121CrossRefGoogle Scholar
  44. 44.
    Yum S S, Hudson J G. Microphysical relationships in warm clouds. Atmos Res, 2001, 57: 81–104CrossRefGoogle Scholar
  45. 45.
    Salby M L. Fundamentals of Atmospheric Physics. New York: Academic Press, 1995Google Scholar
  46. 46.
    Telford J W. Clouds with turbulence: The role of entrainment. Atmos Res, 1996, 40: 261–282CrossRefGoogle Scholar
  47. 47.
    Telford J W, Chai S K. A new aspect of condensation theory. Pure Appl Geophys, 1980, 118: 720–742CrossRefGoogle Scholar
  48. 48.
    Liu Y, Hallett J. On size distributions of cloud droplets growing by condensation: A new conceptual model. J Atmos Sci, 1998, 55: 527–536CrossRefGoogle Scholar
  49. 49.
    Lu C, Liu Y, Yum S S, et al. A new approach for estimating entrainment rate in cumulus clouds. Geophys Res Lett, 2012, 39: L04802Google Scholar
  50. 50.
    Yu X, Dai J, Lei H, et al. Physical effect of cloud seeding revealed by NOAA satellite imagery. Chin Sci Bull, 2005, 50: 44–51CrossRefGoogle Scholar
  51. 51.
    Lu G X, Guo X L. Distribution and origin of aerosol and its transform relationship with CCN derived from the spring multi-aircraft measurements of Beijing Cloud Experiment (BCE). Chin Sci Bull, 2012, 57: 2460–2469CrossRefGoogle Scholar
  52. 52.
    Xue H, Feingold G, Stevens B. Aerosol effects on clouds, precipitation, and the organization of shallow cumulus convection. J Atmos Sci, 2008, 65: 392–406CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Key Laboratory for Atmospheric Physics and Environment of China Meteorological Administration, Key Laboratory of Meteorological Disaster of Ministry of EducationNanjing University of Information Science and TechnologyNanjingChina
  2. 2.Atmospheric Sciences DivisionBrookhaven National LaboratoryNew YorkUSA

Personalised recommendations