Chinese Science Bulletin

, Volume 58, Issue 21, pp 2606–2610 | Cite as

Selectable infiltrating large hollow core photonic band-gap fiber

Open Access
Article Special Issue: Nano-Biomedical Optoelectronic Materials and Devices Progress of Projects Supported by NSFC
  • 813 Downloads

Abstract

A selectable infiltrating large hollow core photonic band-gap fiber is fabricated with simple arc discharge technique. The offset, discharge duration, arc current and discharge times are optimized for selected sealing side air-holes but leave the central large air-hole partially open. The collapse length of the PCF is shortened by increasing the number of discharges and offset with discharge duration and arc current kept at a relatively low level. Light with the wavelength located at the photonic band-gap can still propagate while the central hollow air-hole is infiltrated with a kind of oil with refractive index of 1.30. The selectable infiltrating large hollow core photonic band-gap fiber has potential application for implementing novel lasers, sensors and tunable optoelectronic devices.

Keywords

photonic band-gap fiber side air-hole sealing infiltration 

References

  1. 1.
    Liu J G, Kai G Y, Xue L F, et al. Modal cutoff properties in germanium-doped photonic crystal fiber. Appl Optics, 2006, 45: 2035–2038CrossRefGoogle Scholar
  2. 2.
    Liu J G, Xue L F, Kai G Y, et al. Mode exiting properties of photonic crystal fiber with optical field incident from a single mode fiber. Chin Phys Lett, 2006, 23: 2125–2128CrossRefGoogle Scholar
  3. 3.
    Liu J G, Xue L F, Liu Y G, et al. Enhanced nonlinearity in a simultaneously tapered and Yb3+-doped photonic crystal fiber. J Opt Soc Am B, 2006, 23: 2448–2453CrossRefGoogle Scholar
  4. 4.
    Liu J G, Kai G Y, Zhang C S, et al. Conditions for higher-order resonant modes to be excited in a photonic-crystal fiber Bragg grating. J Opt Soc Am B, 2006, 23: 370–374CrossRefGoogle Scholar
  5. 5.
    Liu J G, Xue L F, Wang Z, et al. Large anomalous dispersion at short wavelength and modal properties of a photonic crystal fiber with large air holes. IEEE J Quant Electron, 2006, 42: 961–968CrossRefGoogle Scholar
  6. 6.
    Liu J G, Xue L F, Wang Y J, et al. Impacts of imperfect geometry structure on the nonlinear and chromatic dispersion properties of a microstructure fiber. Appl Optics, 2007, 46: 7771–7775CrossRefGoogle Scholar
  7. 7.
    Li Y, Liu J G, Kai G Y, et al. The effect of irregular structure to bi-refraction in a photonic crystal fiber. Chin Phys Lett, 2007, 24: 2879–2882CrossRefGoogle Scholar
  8. 8.
    Wang Z, Liu Y G, Kai G Y, et al. Directional couplers operated by resonantcoupling in all-solid photonic bandgap fibers. Opt Exp, 2007, 15: 8925–8930CrossRefGoogle Scholar
  9. 9.
    Zhang C S, Kai G Y, Wang Z, et al. Simulations of effect of high-index materials on highly birefringent photonic crystal fibres. Chin Phys Lett, 2005, 22: 2858–2861CrossRefGoogle Scholar
  10. 10.
    Jin L, Kai G Y, Li J Y, et al. Fibre Bragg gratings inscribed in homemade microstructured fibres. Chin Phys Lett, 2007, 24: 61603–61606Google Scholar
  11. 11.
    Yue Y, Kai G Y, Wang Z, et al. Phase and group modal birefringence of an index-guiding photonic crystal fibre with helical air holes. Optics Commun, 2006, 268: 46–50CrossRefGoogle Scholar
  12. 12.
    Yue Y, Kai G Y, Wang Z, et al. Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice. Opt Lett, 2007, 32: 469–471CrossRefGoogle Scholar
  13. 13.
    Yue Y, Kai G Y, Wang Z, et al. Highly birefringent elliptical-hole photonic crystal fiber with two big circular air holes adjacent to the core. IEEE Photon Technol Lett, 2006, 18: 2638–2640CrossRefGoogle Scholar
  14. 14.
    Yue Y, Kai G, Wang Z, et al. Broadband single-polarization single-mode photonic crystal fiber coupler. IEEE Photon Technol Lett, 2006, 18: 2032–2034CrossRefGoogle Scholar
  15. 15.
    Jin L, Guan B O, Fang Q, et al. Bragg gratings written in photonic crystal fibres with a high-index germanosilicate core. Chin Phys Lett, 2008, 25: 160–163CrossRefGoogle Scholar
  16. 16.
    Liu J G, Cheng T H, Yeo Y K, et al. Light beam coupling between standard single mode fibers and high nonlinearly photonic crystal fibers based on fused biconical tapered technique. Opt Exp, 2009, 17: 11766–11772Google Scholar
  17. 17.
    Liu J G, Kai G Y, Xue L F, et al. An all-optical switching based on highly nonlinear photonic crystal fiber Sagnac loop mirror. Acta Phys Sin, 2007, 56: 941–945Google Scholar
  18. 18.
    Liu J G, Cheng T H, Yeo Y K, et al. Stimulate brillouin scattering based broadband tunable low-light conversion in a highly nonlinear photonic crystal fiber. J Lightwave Technol, 2009, 27: 1279–1285CrossRefGoogle Scholar
  19. 19.
    Liu J G, Cheng T H, Yeo Y K, et al. All-optical continuously tunable delay with a high linear-chirp-rate fiber Bragg grating based on four-wave mixing in a highly-nonlinear photonic crystal fiber. Optics Commun, 2009, 282: 4366–4369CrossRefGoogle Scholar
  20. 20.
    Larsen T, Bjarklev A, Hermann D, et al. Optical devices based on liquid crystal photonic bandgap fibres. Opt Exp, 2003, 11: 2589–2596CrossRefGoogle Scholar
  21. 21.
    Huang Y, Xu Y, Yariv A. Fabrication of functional microstructured optical fibers through a selective filling technique. Appl Phys Lett, 2004, 85: 5182–5184CrossRefGoogle Scholar
  22. 22.
    Martelli C, Canning J, Lyytikainen K, et al. Water-core fresnel fiber. Opt Exp, 2005, 13: 3890–3895CrossRefGoogle Scholar
  23. 23.
    Yiou S, Delaye P, Rouvie A, et al. Stimulated raman scattering in an ethanol core microstructured optical fiber. Opt Exp, 2005, 13: 4786–4791CrossRefGoogle Scholar
  24. 24.
    Nielsen K, Noordegraaf D, Sorensen T, et al. Selective filling of photonic crystal fibres. J Opt A: Pure Appl Opt, 2005, 7: L13–L20CrossRefGoogle Scholar
  25. 25.
    Xiao L M, Jin W, Demokan M S, et al. Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer. Opt Exp, 2005, 13: 9014–9022CrossRefGoogle Scholar
  26. 26.
    Kunimasa S, Nikolaos F, Varshney, et al. Tunable photonic crystal fiber couplers with a thermo-responsive liquid crystal resonator. IEEE/OSA J Lightwave Technol, 2008, 26: 663–669CrossRefGoogle Scholar
  27. 27.
    Alkeskjold T, Lægsgaard J, Bjarklev A. All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers. Opt Exp, 2004, 12: 5857–5871CrossRefGoogle Scholar
  28. 28.
    Yu C P, Liou J H, Huang S S, et al. Tunable dual-core liquid-filled phtonic crystal fibers for dispersion compensation. Opt Exp, 2008, 16: 4443–4451CrossRefGoogle Scholar
  29. 29.
    Chugreev A, Nazarkin A, Abdolvand A, et al. Manipulation of coherent stokes light by transient stimulated Raman scattering in gas filled hollow-core PCF. Opt Exp, 2009, 17: 8822–8829CrossRefGoogle Scholar
  30. 30.
    Du J B, Liu Y G, Wang Z, et al. Thermally tunable dual-core photonic bandgap fiber based on the infusion of a temperature-responsive liquid. Opt Exp, 2008, 16: 4263–4269CrossRefGoogle Scholar
  31. 31.
    Noordegraaf D, Scolari L, Lægsgaard J, et al. Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers. Opt Exp, 2007, 15: 7901–7912CrossRefGoogle Scholar
  32. 32.
    Fedotov I V, Fedotov A B, Zheltikov A M. Raman-resonance-enhanced composite nonlinearity of air-guided modes in hollow photonic-crystal fibers. Opt Lett, 2006, 31: 2604–2606CrossRefGoogle Scholar
  33. 33.
    Ma J J, Bock W J. Modeling of photonic crystal fiber with air holes sealed at the fiber end and its application to fluorescent light collection efficiency enhancement. Opt Exp, 2005, 13: 2385–2393CrossRefGoogle Scholar
  34. 34.
    Yu C P, Liou J H. Selectively liquid-filled photonic crystal fibers for optical devices. Opt Exp, 2009, 17: 8729–8734CrossRefGoogle Scholar
  35. 35.
    Domachuk P, Nguyen H C, Eggleton B J, et al. Microfluidic tunable photonic bandgap device. Appl Phys Lett, 2004, 84: 1838–1840CrossRefGoogle Scholar
  36. 36.
    Gundu K M, Kolesik M, Moloney J V, et al. Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers. Opt Exp, 2006, 14: 6870–6878CrossRefGoogle Scholar
  37. 37.
    Du F, Lu Y Q, Wu S T. Electrically tunable liquid-crystal photonic crystal fiber. Appl Phys Lett, 2004, 85: 2181–2183CrossRefGoogle Scholar
  38. 38.
    Noordegraaf D, Scolari L, Lægsgaard J, et al. Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers. Opt Exp, 2007, 15: 7901–7912CrossRefGoogle Scholar
  39. 39.
    Noordegraaf D, Scolari L, Lægsgaard J. Avoided-crossing-based liquid-crystal photonic-bandgap notch filter. Opt Lett, 2008, 33: 986–988CrossRefGoogle Scholar
  40. 40.
    Zhang R, Teipel J, Giessen H. Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation. Opt Exp, 2006, 14: 6800–6812CrossRefGoogle Scholar
  41. 41.
    Fini J M. Microstructure fibres for optical sensing in gases and liquids. Meas Sci Technol, 2004, 15: 1120–1128CrossRefGoogle Scholar
  42. 42.
    Jensen J B, Pedersen L H, Hoiby P E, et al. Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions. Opt Lett, 2004, 29: 1974–1976CrossRefGoogle Scholar
  43. 43.
    Kerbage C, Steinvurzel P, Reyes P, et al. Highly tunable birefringent microstructured optical fiber. Opt Lett, 2002, 27: 842–844CrossRefGoogle Scholar
  44. 44.
    Benabid F, Couny F, Knight J C, et al. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature, 2005, 434: 488–491CrossRefGoogle Scholar
  45. 45.
    Benabid F, Bouwmans G, Knight J C, et al. Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen. Phys Rev Lett, 2004, 93: 123903CrossRefGoogle Scholar
  46. 46.
    Monro T M, Belardi W, Furusawa K, et al. Sensing with microstructured optical fibres. Meas Sci Technol, 2001, 12: 854–858CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • JianGuo Liu
    • 1
  • YuanXin Du
    • 1
  • NingHua Zhu
    • 1
  • FengMei Liu
    • 2
  1. 1.State Key Laboratory of Integrated Optoelectronics, Institute of SemiconductorsChinese Academy of SciencesBeijingChina
  2. 2.Haidian Maternal & Child Health HospitalBeijingChina

Personalised recommendations