Skip to main content

Remote sensing of environmental change over China: A review

Abstract

China is a large country by area. In situ monitoring of the environment cannot meet the demand of the society. For large areas, remote sensing is the only viable technology for environmental monitoring of the entire area. Although satellite observation capabilities as well as remotely sensed data acquired on board of satellites from both within and outside China are widely available, research is rare that targets the entire territory of China for environmental monitoring. In this paper, the process of environmental change has been categorized into changes in driving forces, environmental change, materials transport and transformation, concentration and abundance change, exposure and infection change of human and ecosystems, and impacts. The potential in monitoring changes in these various aspects is assessed. The progress of environmental change monitoring over the entire territory of China is reviewed. It is suggested that at the methodological level, remote sensing should not only be applied to observation and experiments as well as understanding the change mechanism, but also be coupled with environmental simulation and forecasting so as to support environmental policy making. At the application level, remote sensing should be used beyond its traditional application fields to include species diversity, biological invasion, public health, air and water quality monitoring. Finally, at the technical level, systematic research should be devoted to the improvement of operational and automatic use of remotely sensed data.

References

  1. Leemans R, Asrar G, Busalacchi A, et al. Developing a common strategy for integrative global environmental change research and outreach: The Earth System Science Partnership (ESSP) Strategy Paper. Curr Opin Env Sust, 2009, 1: 4–13

    Article  Google Scholar 

  2. Ci L J. Desertification of extra-arid desert (in Chinese). Chin Sci Bull (Chin Ver), 2011, 56: 2616–2626

    Article  Google Scholar 

  3. Cracknell A P, Varotsos C A. New aspects of global climate- dynamics research and remote sensing. Int J Remote Sens, 2011, 32: 579–600

    Article  Google Scholar 

  4. Li J F, Wang M H, Ho Y S. Trends in research on global climate change: A science citation index expanded-based analysis. Glob Planet Change, 2011, 77: 13–20

    Article  Google Scholar 

  5. FAO. Global Forest Land-Use Change from 1990 to 2005. 2011

  6. FAO. State of the World’s Forests, Rome, Italy, 2011. 179

  7. Nemani R R, Keeling C D, Hashimoto H, et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 2003, 300: 1560–1563

    Article  Google Scholar 

  8. Behrenfeld M J, O’Malley R T, Siegel D A, et al. Climate-driven trends in contemporary ocean productivity. Nature, 2006, 444: 752–755

    Article  Google Scholar 

  9. Rodell M, Velicogna I, Famiglietti J S. Satellite-based estimates of groundwater depletion in India. Nature, 2009, 460: 999–U80

    Article  Google Scholar 

  10. Gong P, Miao X, Ge S K, et al. Water table level in relation to EO-1 ALI and Landsat ETM+ data over a mountainous meadow in California. Can J Remote Sens, 2004, 32: 691–696

    Article  Google Scholar 

  11. Turner B L, Lambin E F, Reenberg A. The emergence of land change science for global environmental change and sustainability. Proc Natl Acad Sci USA, 2007, 102: 20666–20671

    Article  Google Scholar 

  12. Lu D, Weng Q. A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens, 2007, 28: 823–870

    Article  Google Scholar 

  13. Tucker C J, Townshend J R G, Goff T E. African land-cover classification using satellite data. Science, 1985, 227: 369–375

    Article  Google Scholar 

  14. Pu R L, Li Z Q, Gong P, et al. Development and analysis of a 12-year daily 1-km forest fire data across the North America from NOAA/AVHRR data. Remote Sens Environ, 2007, 108: 198–208

    Article  Google Scholar 

  15. Clinton N, Gong P, Jin Z Y, et al. Meta-prediction of Bromus tectorum invasion in Central Utah, U.S.A. Photogramm Eng Remote Sens, 2009, 75: 689–701

    Google Scholar 

  16. Herold M, Mayaux P, Woodcock C E, et al. Some challenges in global land cover mapping: An assessment of agreement and accuracy in existing 1 km datasets. Remote Sens Environ, 2008, 112: 2538–2556

    Article  Google Scholar 

  17. Gong P, Sheng Y W, Biging G S. 3D model-based tree measurement from high resolution aerial imagery. Photogramm Eng Remote Sens, 2002, 68: 1203–1212

    Google Scholar 

  18. Chen Q, Gong P, Baldocchi D, et al. Filtering airborne laser scanning data with morphological methods. Photogr Eng Remote Sens, 2007, 73: 175–185

    Google Scholar 

  19. Sun G Q, Ranson K J, Guo Z, et al. Forest biomass mapping from lidar and radar synergies. Remote Sens Environ, 2011, 115: 2906–2916

    Article  Google Scholar 

  20. Lo C P, Welch R. Chinese urban-population estimates. Ann Assoc A, 1977, 67: 246–253

    Article  Google Scholar 

  21. Hansen M C, DeFries R, Townshend J. Towards an operational MODIS continuous field of percent tree cover algorithm: Examples using AVHRR and MODIS data. Remote Sens Environ, 2002, 83: 303–319

    Article  Google Scholar 

  22. Gong P, Pu R L, Miller J R. Coniferous forest leaf area index estimation along a transect in Oregon using Compact Airborne Spectrographic Imager data. Photogr Eng Rem S, 1995, 61: 1107–1117

    Google Scholar 

  23. Michishita R, Gong P, Xu B. Spectral mixture analysis for bi-sensor wetland mapping using Landsat TM and Terra MODIS data. Int J Remote Sens, 2012, 33: 3373–3401

    Article  Google Scholar 

  24. Li X W, Gao F, Wang J D. A priori knowledge accumulation and its application to linear BRDF model inversion. J Geophys Res, 2001, 106: 11925–11935

    Article  Google Scholar 

  25. Liang S L, Strahler A H. An analytic brdf model of canopy radiative-transfer and its inversion. IEEE T Geosci Remote, 1993, 31: 1081–1092

    Article  Google Scholar 

  26. Shi J C, Jackson T, Tao J, et al. Microwave vegetation indices for short vegetation covers from satellite passive microwave sensor AMSR-E. Remote Sens Environ, 2008, 112: 4285–4300

    Article  Google Scholar 

  27. Liang S L. Quantitative Remote Sensing of Land Surfaces. New York: John Wiley and Sons, Inc, 2004. 534

    Google Scholar 

  28. Qin J, Liang S L, Liu R G, et al. A weak constraint based data assimilation for estimating surface turbulent fluxes. IEEE Geosci Remote Sens, 2007, 4: 649–653

    Article  Google Scholar 

  29. Lu D S, Mausel P, Brondizio E, et al. Change detection techniques. Int J Remote Sens, 2004, 25: 2365–2407

    Article  Google Scholar 

  30. Liu D S, Cai S S. A spatial-temporal modeling approach to reconstructing land-cover change trajectories from multi-temporal satellite imagery. Ann Assoc A, 2011, doi: 10.1080/00045608.2011.596357

  31. Liu J Y, Liu M L, Tian H Q, et al. Spatial and temporal patterns of China’s cropland during 1990–2000: An analysis based on Landsat TM data. Remote Sens Environ, 2005, 98: 442–456

    Article  Google Scholar 

  32. Liu J Y, Deng X Z. Progress of the research methodologies on the temporal and spatial process of LUCC. Chin Sci Bull, 2010, 55: 1354–1362

    Article  Google Scholar 

  33. Liu J Y, Zhan J Y, Deng X Z. The Spatio-temporal patterns and driving forces of urban land expansion in China during the economic reform era. AMBIO, 2005, 34: 450–455

    Google Scholar 

  34. Piao S L, Fang J Y, Ciais P. The carbon balance of terrestrial ecosystems in China. Nature, 2009, 458: 1009–u82

    Article  Google Scholar 

  35. Feng X, Liu G, Chen J M, et al. Net primary productivity of China’s terrestrial ecosystems from a process model driven by remote sensing. J Environ Manage, 2007, 85: 563–573

    Article  Google Scholar 

  36. Bai Z G, Dent D. Recent land degradation and improvement in China. AMBIO, 2009, 38: 150–156

    Article  Google Scholar 

  37. Gong P, Niu Z G, Cheng X, et al. China’s wetland change (1990–2000) determined by remote sensing. Sci China Earth Sci, 2010, 53: 1036–1042

    Article  Google Scholar 

  38. Sun J L. Dynamic monitoring and yield estimation of crops by mainly using the remote sensing technique in China. Photogramm Eng Remote Sens, 2010, 66: 645–650

    Google Scholar 

  39. Xiao X M, Liu J Y, Zhuang D F, et al. Uncertainties in estimates of cropland area in China: A comparison between an AVHRR-derived dataset and a Landsat TM-derived dataset. Glob Planet Change, 2003, 37: 297–306

    Google Scholar 

  40. Zhuang D F, Liu M L, Deng X Z. Spatialization model of population based on dataset of land use and land cover change in China. Chin Geogr Sci, 2002, 12: 114–119

    Article  Google Scholar 

  41. Ma R H, Duan H T, Hu C M, et al. A half-century of changes in China’s lakes: Global warming or human influence? Geophys Res Lett, 2010, 37: L24106

    Article  Google Scholar 

  42. Shang S L, Lee Z P, Wei G M. Characterization of MODIS-derived euphotic zone depth: Results for the China Sea. Remote Sens Environ, 2011, 115: 180–186

    Article  Google Scholar 

  43. Fernandez J E. Resource consumption of new urban construction in China. J Ind Ecol, 2007, 11: 99–115

    Article  Google Scholar 

  44. Yang X C, Hou Y L, Chen B D. Observed surface warming induced by urbanization in east China. J Geophys Res, 2011, 116: D14113

    Article  Google Scholar 

  45. Zhao Y, McElroy M B, Xing J, et al. Multiple effects and uncertainties of emission control policies in China: Implications for public health, soil acidification, and global temperature. Sci Total Environ, 2011, 409: 5177–5187

    Article  Google Scholar 

  46. Zhang F Y, Wang W Y, Lv J M. Time-series studies on air pollution and daily outpatient visits for allergic rhinitis in Beijing, China. Sci Total Environ, 2011, 409: 2486–2492

    Article  Google Scholar 

  47. Zhang J, Pu L J, Peng B Z, et al. The impact of urban land expansion on soil quality in rapidly urbanizing regions in China: Kunshan as a case study. Environ Geochem Health, 2011, 33: 125–135

    Article  Google Scholar 

  48. Siciliano G. Urbanization strategies, rural development and land use changes in China: A multiple-level integrated assessment. Land Use Policy, 2012, 29: 165–178

    Article  Google Scholar 

  49. Wang L, Li C C, Ying Q, et al. China’s urban expansion from 1990 to 2010 determined with satellite remote sensing. Chin Sci Bull, 2012, 57: 2802–2812

    Article  Google Scholar 

  50. Niu Z G, Zhang H Y, Wang X W, et al. Mapping wetland changes in China between 1978 and 2008. Chin Sci Bull, 2012, 57: 2813–2823

    Article  Google Scholar 

  51. Zheng Y M, Zhang H Y, Niu Z G, et al. Protection efficacy of national wetland reserves in China. Chin Sci Bull, 2012, 57: 207–230

    Google Scholar 

  52. Yu C Q, Gong P, Yin Y Y. China’s water crisis needs more than words. Nature, 2011, 470: 307

    Article  Google Scholar 

  53. Lu H, Shi J C. Reconstruction and analysis of temporal and spatial variations in surface soil moisture in China using remote sensing. Chin Sci Bull, 2012, 57: 2824–2834

    Article  Google Scholar 

  54. Liu S, Gong P. Change of surface cover greenness in China between 2000 and 2010. Chin Sci Bull, 2012, 57: 2835–2845

    Article  Google Scholar 

  55. Gong P, Pu R L, Biging G S, et al. Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data. IEEE T Geosci Remote, 2003, 41: 1355–1362

    Article  Google Scholar 

  56. Deng F, Chen J M, Plummer S, et al. Algorithm for global leaf area index retrieval using satellite imagery. IEEE T Geosci Remote, 2006, 44: 2219–2229

    Article  Google Scholar 

  57. Zhu G L, Ju W M, Chen J M, et al. Foliage clumping index over China’s landmass retrieved from the MODIS BRDF parameters product. IEEE T Geosci Remote, 2011, doi:10.11091TGRS.2011.2172213

  58. Liu Y B, Ju W M, Chen J M, et al. Spatial and temporal variations of forest LAI over China during 2010–2010. Chin Sci Bull, 2012, 57: 2846–2856

    Article  Google Scholar 

  59. Wang Z F, Chen L F, Tao J H, et al. Satellite-based estimation of regional particulate matter (PM) in Beijing using vertical-and-RH correcting method. Remote Sens Environ, 2010, 114: 50–63

    Article  Google Scholar 

  60. Cheng T H, Gu X F, Xie D H, et al. Simultaneous retrieval of aerosol optical properties over the Pearl River Delta, China using multi-angular, multi-spectral, and polarized measurements. Remote Sens Environ, 2011, 115: 1643–1652

    Article  Google Scholar 

  61. Wang X L, Mannaerts C M, Yang S T, et al. Evaluation of soil nitrogen emissions from riparian zones coupling simple process-oriented models with remote sensing data. Sci Total Environ, 2010, 408: 3310–3318

    Article  Google Scholar 

  62. Li Z Q, Chen H, Cribb M, et al. Preface to special section on east Asian studies of tropospheric aerosols: An international regional experiment (EAST-AIRE). J Geophys Res, 2007, 112: D22S00

    Article  Google Scholar 

  63. Wang S W, Streets D G, Zhang Q, et al. Satellite detection and model verification of NO(x) emissions from power plants in Northern China. Environ Res Lett, 2010, 5: 044007

    Article  Google Scholar 

  64. Wang Y, Zhang Y, Hao J, et al. Seasonal and spatial variability of surface ozone over China: Contributions from background and domestic pollution. Atmos Chem Phys, 2011, 11: 3511–3525

    Article  Google Scholar 

  65. Zhang Q, He K B, Geng G N, et al. Satellite remote sensing of changes in NOx emissions over China during 1996–2010. Chin Sci Bull, 2012, 57: 2857–2864

    Article  Google Scholar 

  66. Shen L L, Wang Y X. Changes in tropospheric ozone levels over the Three Representative Regions of China observed from space by Tropospheric Emission Spectrometer (TES), 2005–2010. Chin Sci Bull, 2012, 57: 2865–2871

    Article  Google Scholar 

  67. Shi L, Zhao S Q, Tang Z Y, et al. The changes in China’s forests: An analysis using the forest identity. PLoS One, 2011, 6: e20778

    Article  Google Scholar 

  68. Xu G H, Gong P, Shao L Q, et al, Four prioritized research area of global change research that need to be strengthened in China (in Chinese). Review of Global Change Research, First Vol, Beijing: Higher Education Press, 2010. 1–11

    Google Scholar 

  69. Xu G H, Ju H B, He B, et al. 21st century Chinese earth science development: based on China, towards the world (in Chinese). Sci Technol Daily, 2010-8-1

  70. Behrenfeld M J. Abandoning Sverdrup’s critical depth hypothesis on phytoplankton blooms. Ecology, 2010, 91: 977–989

    Article  Google Scholar 

  71. Myneni R B, Keeling C D, Tucker C J, et al. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 1997, 386: 698–702

    Article  Google Scholar 

  72. Samanta A, Costa M H, Nunes E L, et al. Comment on “drought-induced reduction in global terrestrial net primary production from 2000 through 2009”. Science, 2011, 333: 1093

    Article  Google Scholar 

  73. Liang L, Xu B, Chen Y L, et al. Combining spatial-temporal and phylogenetic analysis approaches for improved understanding on global H5N1 transmission. PLoS One, 2010, 5: e13575

    Article  Google Scholar 

  74. White M A, de Beurs K M, Didan K, et al. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Glob Change Biol, 2009, 15: 2335–2359

    Article  Google Scholar 

  75. Garrity S R, Bohrer G, Maurer K D, et al. A comparison of multiple phenology data sources for estimating seasonal transitions in deciduous forest carbon exchange. Agr Forest Meteorol, 2011, 151: 1741–1752

    Article  Google Scholar 

  76. Jones M O, Jones L A, Kimball J S, et al. Satellite passive microwave remote sensing for monitoring global land surface phenology. Remote Sens Environ, 2011, 115: 1102–1114

    Article  Google Scholar 

  77. Zhao M S, Running S W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 2010, 329: 940–943

    Article  Google Scholar 

  78. Sellers P J, Meeson B W, Hall F G, et al. Remote-sensing of the land-surface for studies of global change—models, algorithms, experiments. Remote Sens Environ, 1995, 51: 3–26

    Article  Google Scholar 

  79. Piao S L, Ciais P, Friedlingstein P, et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 2008, 451: 49–U3

    Article  Google Scholar 

  80. Fang L Q, de Vlas S J, Liang S, et al. Environmental factors contributing to the spread of avian influenza in mainland China. PLoS One, 2008, 3: e2268

    Article  Google Scholar 

  81. Spear R C, Seto E Y W, Carlton E J, et al. The challenge of effective surveillance in moving from low transmission to elimination of schistosomiasis in China. Int J Parasitol, 2011, 41: 1243–1247

    Article  Google Scholar 

  82. Zhou X N, Yang G J, Yang K, et al. Potential impact of climate change on schistosomiasis transmission in China. Am J Trop Med Hyg, 2008, 78: 188–194

    Google Scholar 

  83. Yang G J, Gao Q, Zhou S S, et al. Mapping and predicting malaria transmission in the People’s Republic of China, using integrated biology-driven and statistical models. Geospatial Health, 2010, 5: 11–22

    Google Scholar 

  84. Zhang J F, Mauzerall D L, Zhu T, et al. Environmental health in China: Progress towards clean air and safe water. Lancet, 2010, 375: 1110–1119

    Article  Google Scholar 

  85. Gong P, Liang S L, Carlton E, et al. Urbanization and health in China. Lancet, 2012, 379: 843–852

    Article  Google Scholar 

  86. Smith K R, McCracken J P, Weber M W, et al. Effect of reduction in household air pollution on childhood pneumonia in Guatemala (RESPIRE): A randomised controlled trial. Lancet, 2011, 378: 1717–1726

    Article  Google Scholar 

  87. Fan M S, Shen J B, Yuan L X, et al. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. J Environ Bot, 2012, 63: 13–24

    Article  Google Scholar 

  88. Lv Y H, Fu B J, Wei W. Major ecosystems in China, dynamics and challenges for sustainable management. Environ Manage, 2011, 48: 13–27

    Article  Google Scholar 

  89. Scherler D, Bookhagen B, Strecker M R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat Geosci, 2011, 4: 156–159

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Gong.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Gong, P. Remote sensing of environmental change over China: A review. Chin. Sci. Bull. 57, 2793–2801 (2012). https://doi.org/10.1007/s11434-012-5268-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-012-5268-y

Keywords

  • environmental change
  • remote sensing
  • China
  • simulation and prediction
  • environmental policy