Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Chinese Science Bulletin
  3. Article

Visible-light photocatalytic activity and mechanism of novel AgBr/BiOBr prepared by deposition-precipitation

  • Article
  • Physical Chemistry
  • Open access
  • Published: 09 August 2012
  • Volume 57, pages 2901–2907, (2012)
  • Cite this article
Download PDF

You have full access to this open access article

Chinese Science Bulletin
Visible-light photocatalytic activity and mechanism of novel AgBr/BiOBr prepared by deposition-precipitation
Download PDF
  • HaiLi Lin1,
  • Jing Cao1,
  • BangDe Luo1,
  • BenYan Xu1 &
  • …
  • ShiFu Chen1 
  • 2915 Accesses

  • 31 Citations

  • Explore all metrics

Abstract

A new composite photocatalyst AgBr/BiOBr was prepared by loading AgBr on a BiOBr substrate via deposition-precipitation and characterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy and UV-vis diffuse reflectance spectroscopy. The as-prepared AgBr/BiOBr comprised face-centered cubic AgBr and tetragonal BiOBr particles. The average crystalline sizes of AgBr in the AgBr/BiOBr composites were less than 28.5 nm. The absorption edges of AgBr/BiOBr in visible-light region had a red shift with increasing AgBr content. Photocatalytic degradation of methyl orange results show that the AgBr/BiOBr composites could degrade methyl orange efficiently under visible-light irradiation (λ>420 nm). The optimal molar percentage of AgBr was 50 mol% with corresponding maximum k app of 0.00619 min−1. Active ·O −2 played a major role for methyl orange degradation while h+ and ·OH had little effect on the photocatalytic process. The enhancement of photocatalytic activity of AgBr/BiOBr is mainly ascribed to the heterojunction effect between AgBr and BiOBr.

Article PDF

Download to read the full article text

Similar content being viewed by others

Shape-controllable synthesis and morphology-dependent photocatalytic properties of AgBr photocatalysts

Article 18 March 2016

The fast degradation for tetracycline over the Ag/AgBr/BiOBr photocatalyst under visible light

Article 27 September 2021

In situ construction of BiOBr/Ag3PO4 composites with enhanced visible light photocatalytic performances

Article 01 April 2017

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Bioinorganic Chemistry
  • Biomethanol
  • Dental Biomaterials
  • Non-photochemical quenching
  • Optical Materials
  • Photocatalysis
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Inumaru K, Murashima M, Kasahara T, et al. Enhanced photocatalytic decomposition of 4-nonylphenol by surface-organografted TiO2: A combination of molecular selective adsorption and photocatalysis. Appl Catal B: Environ. 2004, 52: 275–280

    Article  Google Scholar 

  2. Yamazakia S, Moria T, Katoua T, et al. Photocatalytic degradation of 4-tert-octylphenol in water and the effect of peroxydisulfate as additives. J Photochem Photobiol A: Chem. 2008, 199: 330–335

    Article  Google Scholar 

  3. Tsai W T, Lee M K, Su T Y, et al. Photodegradation of bisphenol-A in a batch TiO2 suspension reactor. J Hazard Mater. 2009, 168: 269–275

    Article  Google Scholar 

  4. Wang R, Ren D, Xia S, et al. Photocatalytic degradation of bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR). J Hazard Mater. 2009, 169: 926–932

    Article  Google Scholar 

  5. Zhao W, Ma W H, Chen C C, et al. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2−x Bx under visible irradiation. J Am Chem Soc. 2004, 126: 4782–4783

    Article  Google Scholar 

  6. Yu J C, Ho W K, Yu J G, et al. Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environ Sci Technol. 2005, 39: 1175–1179

    Article  Google Scholar 

  7. Ho W, Yu J C, Lee S C. Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity. J Solid State Chem. 2006, 179: 1171–1176

    Article  Google Scholar 

  8. Sun Q, Xu Y M. Sensitization of TiO2 with aluminum phthalocyanine: Factors influencing the efficiency for chlorophenol degradation in water under visible light. J Phys Chem C. 2009, 113: 12387–12394

    Article  Google Scholar 

  9. Arabatzis I M, Stergiopoulos T, Bernard M C, et al. Silver modified titanium dioxide thin films for efficient photodegradation of methyl orange. Appl Catal B: Environ. 2003, 42: 187–201

    Article  Google Scholar 

  10. Ishibai Y, Sato J, Nishikawa T, et al. Synthesis of visible-light active TiO2 photocatalyst with Pt-modification: Role of TiO2 substrate for high photocatalytic activity. Appl Catal B: Environ. 2008, 79: 117–121

    Article  Google Scholar 

  11. Li G S, Zhang D Q, Yu J C. Ordered mesoporous BiVO4 through anocasting: A superior visible light-driven photocatalyst. Chem Mater. 2008, 20: 3983–3992

    Article  Google Scholar 

  12. Tang J W, Zou Z G, Ye J H. Effects of substituting Sr2+ and Ba2+ for Ca2+ on the structural properties and photocatalytic behaviors of CaIn2O4. Chem Mater. 2004, 16: 1644–1649

    Article  Google Scholar 

  13. Yamasita D, Takata T, Hara M, et al. Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting. Solid State Ionics. 2004, 172: 591–595

    Article  Google Scholar 

  14. Shi R, Lin J, Wang Y J, et al. Visible-light photocatalytic degradation of BiTaO4 photocatalyst and mechanism of photocorrosion suppression. J Phys Chem C. 2010, 114: 6472–6477

    Article  Google Scholar 

  15. Shang M, Wang W Z, Zhang L. Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template. J Hazard Mater. 2009, 167: 803–809

    Article  Google Scholar 

  16. Zhang J, Shi F J, Lin J, et al. Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst. Chem Mater. 2008, 20: 2937–2941

    Article  Google Scholar 

  17. Zhang X, Ai Z H, Jia F L, et al. Generalized one-pot synthesis, characterization and photocatalytic activity of hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres. J Phys Chem C. 2008, 112: 747–753

    Article  Google Scholar 

  18. Jiang Z, Yang F, Yang G D, et al. The hydrothermal synthesis of BiOBr flakes for visible-light-responsive photocatalytic degradation of methyl orange. J Photochem Photobiol A: Chem. 2010, 212: 8–13

    Article  Google Scholar 

  19. Chang X F, Huang J, Cheng C, et al. BiOX (X=Cl, Br, I) photocatalysts prepared using NaBiO3 as the Bi source: Characterization and catalytic performance. Catal Commun. 2010, 11: 460–464

    Article  Google Scholar 

  20. An H Z, Du Y, Wang T M, et al. Photocatalytic properties of BiOX (X=Cl, Br, and I). Rare Metals. 2008, 27: 243–250

    Article  Google Scholar 

  21. Wang W D, Huang F Q, Lin X P, et al. Visible-light-responsive photocatalysts xBiOBr-(1−x)BiOI. Catal Commun. 2008, 9: 8–12

    Article  Google Scholar 

  22. Henle J, Simon P, Frenzel A, et al. Nanosized BiOX (X=Cl, Br, I) particles synthesized in reverse microemulsions. Chem Mater. 2007, 19: 366–373

    Article  Google Scholar 

  23. Zhang X, Zhang L Z, Xie T F, et al. Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures. J Phys Chem C. 2009, 113: 7371–7378

    Article  Google Scholar 

  24. Cheng H F, Huang B B, Dai Y, et al. One-step synthesis of the nanostructured AgI/BiOI composites with highly enhanced visible-light photocatalytic performances. Langmuir. 2010, 26: 6618–6624

    Article  Google Scholar 

  25. Li Y Y, Wang J S, Yao H C, et al. Chemical etching preparation of BiOI/Bi2O3 heterostructures with enhanced photocatalytic activities. Catal Commun. 2011, 12: 660–664

    Article  Google Scholar 

  26. Chang X F, Yu G, Huang J, et al. Enhancement of photocatalytic activity over NaBiO3/BiOCl composite prepared by an in situ formation strategy. Catal Today. 2010, 153: 193–199

    Article  Google Scholar 

  27. Zhang L, Wang W Z, Zhou L, et al. Fe3O4 coupled BiOCl: A highly efficient magnetic photocatalyst. Appl Catal B: Environ. 2009, 90: 458–462

    Article  Google Scholar 

  28. Chai S Y, Kim Y J, Jung M H, et al. Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst. J Catal. 2009, 262: 144–149

    Article  Google Scholar 

  29. Shamaila S, Sajjad A K L, Chen F, et al. WO3/BiOCl, a novel heterojunction as visible light photocatalyst. J Colloid Interface Sci. 2011, 356: 465–472

    Article  Google Scholar 

  30. Kakuta N, Goto N, Ohkita H, et al. Silver bromide as a photocatalyst for hydrogen generation from CH3OH/H2O solution. J Phys Chem B. 1999, 103: 517–519

    Article  Google Scholar 

  31. Hu C, Lan Y Q, Qu J H, et al. Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria. J Phys Chem B. 2006, 110: 4066–4072

    Article  Google Scholar 

  32. Lan Y Q, Hu C, Hu X X, et al. Efficient destruction of pathogenic bacteria with AgBr/TiO2 under visible light irradiation. Appl Catal B: Environ. 2007, 73: 354–360

    Article  Google Scholar 

  33. Elahifard M R, Rahimnejad S, Haghighi S, et al. Apatite-coated Ag/AgBr/TiO2 visible-light photocatalyst for destruction of bacteria. J Am Chem Soc. 2007, 129: 9552–9553

    Article  Google Scholar 

  34. Zang Y J, Ramin F. Photocatalytic activity of AgBr/TiO2 in water under simulated sunlight irradiation. Appl Catal B: Environ. 2008, 79: 334–340

    Article  Google Scholar 

  35. Pourahmad A, Sohrabnezhad S, Kashefian E. AgBr/nanoAlMCM-41 visible light photocatalyst for degradation of methylene blue dye. Spectrochim Acta Part A. 2010, 77: 1108–1114

    Article  Google Scholar 

  36. Zhou X F, Hu C, Hu X X, et al. Plasmon-assited degradation of toxic pollutions with Ag-AgBr/Al2O3 under visible-light irradiation. J Phys Chem C. 2010, 114: 2746–2750

    Article  Google Scholar 

  37. Rodrigues S, Uma S, Martyanov I N, et al. AgBr/Al-MCM-41 visible-light photocatalyst for gas-phase decomposition of CH3CHO. J Catal. 2005, 233: 405–410

    Article  Google Scholar 

  38. Zang Y J, Farnood R, Currie J. Photocatalytic activities of AgBr/Y-zeolite in water under visible light irradiation. Chem Eng Sci. 2009, 64: 2881–2886

    Article  Google Scholar 

  39. Li G T, Wong H K, Zhang X W, et al. Degradation of acid orange 7 using magnetic AgBr under visible light: The roles of oxidizing species. Chemosphere. 2009, 76: 1185–1191

    Article  Google Scholar 

  40. Wang P, Huang B B, Qin X Y, et al. Ag/AgBr/WO3·H2O: Visible-light photocatalyst for bacteria destruction. Inorg Chem. 2009, 48: 10697–10702

    Article  Google Scholar 

  41. Zhang L S, Wong K H, Chen Z G, et al. AgBr-Ag-Br2WO6 nanojunction system: A novel and efficient photocatalyst with double visible-light active components. Appl Catal A: Gen. 2009, 363: 211–229

    Article  Google Scholar 

  42. Zhang L S, Wong K H, Yip H Y, et al. Effective photocatalytic disinfection of E. coli K-12 using AgBr-Ag-Bi2WO6 nanojunction system irradiated by visible light: The role of diffusing hydroxyl radicals. Environ Sci Technol. 2010, 44: 1392–1398

    Article  Google Scholar 

  43. Asi M A, He C, Su M H, et al. Photocatalytic reduction of CO2 to hydrocarbons using AgBr/TiO2 nanocomposites under visible light. Catal Today. 2011, 175: 256–263

    Article  Google Scholar 

  44. Cao J, Luo B D, Lin H L, et al. Photocatalytic activity of novel AgBr/WO3 composite photocatalyst under visible light irradiation for methyl orange degradation. J Hazard Mater. 2011, 190: 700–706

    Article  Google Scholar 

  45. Victora R H. Calculated electronic structure of silver halide crystals. Phys Rev B. 1997, 56: 4417–4421

    Article  Google Scholar 

  46. Cheng H F, Huang B B, Wang P, et al. In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants. Chem Commun. 2011, 47: 7054–7056

    Article  Google Scholar 

  47. Galceran M, Pujol M C, Zaldo C, et al. Synthesis, structural, and optical properties in monoclinic Er:KYb(WO4)2 nanocrystals. J Phys Chem C. 2009, 113: 15497–15506

    Article  Google Scholar 

  48. Jiang R, Zhu H Y, Li X D, et al. Visible light photocatalytic decolourization of C. I. Acid Red 66 by chitosan capped CdS composite nanoparticles. Chem Eng J, 2009, 152: 537–542

    Article  Google Scholar 

  49. Dong X, Ding W, Zhang X, et al. Mechanism and kinetics model of degradation of synthetic dyes by UV-vis/H2O2/Freeioxallate complexes. Dye Pigments. 2007, 74: 470–476

    Article  Google Scholar 

  50. Li Y, Li X, Li J, et al. Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Res. 2006, 40: 1119–1126

    Article  Google Scholar 

  51. Sun J H, Wang X L, Sun J Y, et al. Photocatalytic degradation and kinetics of Orange G using nano-sized Sn(IV)/TiO2/AC photocatalyst. J Mol Catal A: Chem. 2006, 260: 241–246

    Article  Google Scholar 

  52. Wu C, Chang H, Chen J. Basic dye decomposition kinetics in a photocatalytic slurry reactor. J Hazard Mater. 2006, 137: 336–343

    Article  Google Scholar 

  53. Zhang N, Liu S Q, Fu X Z, et al. Synthesis of M@TiO2 (M=Au, Pd, Pt) core-shell nanocomposites with tunable photoreactivity. J Phys Chem C. 2011, 115: 9136–9145

    Article  Google Scholar 

  54. Butler M A, Ginley D S. Prediction of flatband potentials at semiconductor-electrolyte interfaces from atomic electronegativities. J Electrochem Soc. 1978, 125: 228–232

    Article  Google Scholar 

  55. Chang X F, Huang J, Tan Q Y, et al. Photocatalytic degradation of PCP-Na over BiOI nanosheets under simulated sunlight irradiation. Catal Commun. 2009, 10: 1957–1961

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, China

    HaiLi Lin, Jing Cao, BangDe Luo, BenYan Xu & ShiFu Chen

Authors
  1. HaiLi Lin
    View author publications

    Search author on:PubMed Google Scholar

  2. Jing Cao
    View author publications

    Search author on:PubMed Google Scholar

  3. BangDe Luo
    View author publications

    Search author on:PubMed Google Scholar

  4. BenYan Xu
    View author publications

    Search author on:PubMed Google Scholar

  5. ShiFu Chen
    View author publications

    Search author on:PubMed Google Scholar

Corresponding authors

Correspondence to Jing Cao or ShiFu Chen.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Lin, H., Cao, J., Luo, B. et al. Visible-light photocatalytic activity and mechanism of novel AgBr/BiOBr prepared by deposition-precipitation. Chin. Sci. Bull. 57, 2901–2907 (2012). https://doi.org/10.1007/s11434-012-5260-6

Download citation

  • Received: 13 October 2011

  • Accepted: 06 March 2012

  • Published: 09 August 2012

  • Issue Date: August 2012

  • DOI: https://doi.org/10.1007/s11434-012-5260-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • composite photocatalyst
  • AgBr/BiOBr
  • deposition-precipitation method
  • methyl orange
  • reaction mechanism
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

152.53.39.118

Not affiliated

Springer Nature

© 2025 Springer Nature