Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Chinese Science Bulletin
  3. Article
Molecular basis and genetic improvement of economically important traits in aquaculture animals
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Status of genetic studies and breeding of Saccharina japonica in China

08 July 2020

Xiuliang Wang, Jianting Yao, … Delin Duan

Genetic resources of Nile tilapia (Oreochromis niloticus Linnaeus, 1758) in its native range and aquaculture

22 September 2022

Temesgen Tola Geletu & Jinliang Zhao

Construction of a High-Density Genetic Linkage Map and QTL Mapping for Growth-Related Traits in Takifugu bimaculatus

03 January 2020

Yue Shi, Zhixiong Zhou, … Peng Xu

Breeding studies on red sea bream Pagrus major: mass selection to genome editing

23 January 2023

Keitaro Kato

Sex determination mechanisms and sex control approaches in aquaculture animals

16 May 2022

Xi-Yin Li, Jie Mei, … Jian-Fang Gui

Sustainable use of CRISPR/Cas in fish aquaculture: the biosafety perspective

25 July 2021

Arinze S. Okoli, Torill Blix, … Xiaodong Xu

Genomic selection in salmonids: new discoveries and future perspectives

13 August 2021

Edo D’Agaro, Andea Favaro, … Stefano Esposito

Genetic improvement in Pleurotus (oyster mushroom): a review

06 August 2019

Anupam Barh, V. P. Sharma, … Pankaj Bhatt

Genomic Selection. I: Latest Trends and Possible Ways of Development

23 September 2020

Yu. A. Stolpovsky, A. K. Piskunov & G. R. Svishcheva

Download PDF
  • Review
  • Open Access
  • Published: 08 May 2012

Molecular basis and genetic improvement of economically important traits in aquaculture animals

  • JianFang Gui1 &
  • ZuoYan Zhu1 

Chinese Science Bulletin volume 57, pages 1751–1760 (2012)Cite this article

  • 3381 Accesses

  • 198 Citations

  • Metrics details

Abstact

Aquaculture has been believed to be a major Chinese contribution to the world. In recent 20 years, genome and other genetic technologies have promoted significant advances in basic studies on molecular basis and genetic improvement of aquaculture animals, and complete genomes of some main aquaculture animals have been sequenced or announced to be sequenced since the beginning of this century. Here, we review some significant breakthrough progress of aquaculture genetic improvement technologies including genome technologies, somatic cell nuclear transfer and stem cell technologies, outline the molecular basis of several economically important traits including reproduction, sex, growth, disease resistance, cold tolerance and hypoxia tolerance, and present a series of candidate trait-related genes. Finally, some application cases of genetic improvement are introduced in aquaculture animals, especially in China, and several development trends are highlighted in the near future.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Wu H W, Zhong L. Progress and achievement on artificial proliferation of grass carp, black carp, silver carp and big head carp in China. Chin Sci Bull, 1964, 9: 900–907

    Google Scholar 

  2. Wu C J, Gui J F. Fish Genetics and Breeding Engineering (in Chinese). Shanghai: Shanghai Scientific and Technical Publishers, 1999

  3. Naylor R L, Goldburg R J, Primavera J H, et al. Effect of aquaculture on world fish supplies. Nature, 2000, 405: 1017–1024

    Article  Google Scholar 

  4. Pauly D, Christensen V, Guénette S, et al. Towards sustainability in world fisheries. Nature, 2002, 418: 689–695

    Article  Google Scholar 

  5. James H T, Geoff L A. Fishes as food: aquaculture’s contribution. EMBO Rep, 2001, 21: 958–963

    Google Scholar 

  6. Gui J F. The present and future of studies on genetic and developmental biological basis for improvement of important aquaculture fishes. Life Sci, 2005, 17: 112–118

    Google Scholar 

  7. Sarropoulou E, Nousdili D, Magoulas A, et al. Linking the genomes of nonmodel teleosts through comparative genomics. Mar Biotechnol, 10: 227–233

  8. Star B, Nederbragt A J, Jentoft S, et al. The genome sequence of Atlantic cod reveals a unique immune system. Nature, 2011, 477: 207–210

    Article  Google Scholar 

  9. Chi W, Tong C, Gan X, et al. Characterization and comparative profiling of MiRNA transcriptomes in bighead carp and silver carp. PLoS ONE, 2011, 6: e23549

    Article  Google Scholar 

  10. Liu Z J. Aquaculture Genome Technologies. Oxford, UK: Blackwell Publishing, Ames, IA, 2007

    Book  Google Scholar 

  11. Yang L, Gui J F. Positive selection on multiple antique allelic lineages of transferrin in the polyploid Carassius auratus. Mol Biol Evol, 2004, 21: 1264–1277

    Article  Google Scholar 

  12. Zhou L, Wang Y, Gui J F. Molecular analysis of silver crucian carp (Carassius auratus gibelio Bloch) clones by SCAR markers. Aquaculture, 2001, 201: 219–228

    Article  Google Scholar 

  13. Guo W, Gui J F. Microsatellite marker isolation and cultured strain identification in Carassius auratus gibelio. Aquaculture Int, 2008, 16: 497–510

    Article  Google Scholar 

  14. Wang D, Mao H L, Peng J X, et al. Discovery of a male-biased mutant family and identification of a male-specific SCAR marker in gynogenetic gibel carp Carassius auratus gibelio. Prog Nat Sci, 2009, 19: 1537–1544

    Article  Google Scholar 

  15. Li F B, Gui J F. Clonal diversity and genealogical relationships of gibel carp in four hatcheries. Anim Genet, 2008, 39: 28–33

    Article  Google Scholar 

  16. Jakovlic I, Gui J F. Recent invasion and low level of divergence between diploid and triploid forms of Carassius auratus complex in Croatia. Genetica, 2011, 139: 789–804

    Article  Google Scholar 

  17. Zhou L, Wang Y, Gui J F. Genetic evidence for gonochoristic reproduction in gynogenetic silver crucian carp (Carassius auratus gibelio Bloch) as revealed by RAPD assays. J Mol Evol, 2000, 51: 498–506

    Google Scholar 

  18. Gui J F, Zhou L. Genetic basis and breeding application on clonal diversity and dual reproduction modes in polyploid Carassius auratus gibelio. Sci China Life Sci, 2010, 53: 409–415

    Article  Google Scholar 

  19. Avise J C. Clonality: The Genetics, Ecology, and Evolution of Sexual Abstinence in Vertebrates. USA: Oxford University Press, 2008

    Google Scholar 

  20. Sun X W, Liang L Q. A genetic linkage map of common carp (Cyprinus carpio L.) and mapping of a locus associated with cold tolerance. Aquaculture, 2004, 238: 165–172

    Article  Google Scholar 

  21. Cheng L, Liu L, Yu X, et al. A linkage map of common carp (Cyprinus carpio) based on AFLP and microsatellite markers. Anim Genet, 2009, 41: 191–198

    Article  Google Scholar 

  22. Zhang Y, Xu P, Lu C, et al. Genetic linkage mapping and analysis of muscle fiber-related QTLs in common carp (Cyprinus carpio L.). Mar Biotechnol, 2010, 13: 376–392

    Article  Google Scholar 

  23. Zheng X, Kuang Y, Zhang X, et al. A genetic linkage map and comparative genome analysis of common carp (Cyprinus carpio L.) using microsatellites and SNPs. Mol Genet Genomics, 2011, 286: 261–277

    Article  Google Scholar 

  24. Li Y, Xu P, Zhao Z X, et al. Construction and characterization of the BAC library for common carp Cyprinus Carpio L. and establishment of microsynteny with Zebrafish Danio Rerio. Mar Biotechnol, 2010, 13: 706–712

    Article  Google Scholar 

  25. Xu P, Li J, Li Y, et al. Genomic insight into the common carp (Cyprinus carpio) genome by sequencing analysis of BAC-end sequences. BMC Genomics, 2011, 12: 188

    Article  Google Scholar 

  26. Xia J H, Liu F, Zhu Z Y, et al, A consensus linkage map of the grass carp(Ctenopharyngodon idella) based on microsatellites and SNPs. BMC Genomics, 2010, 11: 135

    Article  Google Scholar 

  27. Geng F S, Zhou L, Gui J F. Construction and characterization of a BAC library for Carassius auratus gibelio, a gynogenetic polyploid fish. Anim Genet, 2005, 36: 535–536

    Article  Google Scholar 

  28. Zhang Y, Zhang X, Scheuring C F, et al. Construction and characterization of two bacterial artificial chromosome libraries of Zhikong scallop, Chlamys farreri Jones et Preston, and identification of BAC clones containing the genes involved in its innate immune system. Mar Biotechnol, 2008, 10: 358–365

    Article  Google Scholar 

  29. Zhang X, Zhang Y, Scheuring C, et al. Construction and characterization of a bacterial artificial chromosome (BAC) library of Pacific white shrimp, Litopenaeus vannamei. Mar Biotechnol, 2010, 12: 141–149

    Article  Google Scholar 

  30. Jang S H, Liu H, Su J G, et al. Construction and characterization of two bacterial artificial chromosome libraries of grass carp. Mar Biotechnol, 2010, 12: 261–266

    Article  Google Scholar 

  31. Shao C W, Chen S L, Scheuring C F, et al. Construction of two BAC libraries from half-smooth tongue sole Cynoglossus semilaevis and identification of clones containing candidate sex-determination genes. Mar Biotechnol, 2010, 12: 558–568

    Article  Google Scholar 

  32. Yan S Y, Lu D Y, Du M, et al. Nuclear transplantation in teleosts. Hybrid fish from the nucleus of crucian and the cytoplasm of carp. Sci Sin B. 1984, 27: 1029–1034

    Google Scholar 

  33. Chen H, Yi Y, Chen M, et al. Studies on the developmental potentiality of cultured cell nuclei of fish. Int J Biol Sci, 2010, 6: 192–198

    Article  Google Scholar 

  34. Deng C, Liu H. An unknown piece of early work of nuclear reprogramming in fish eggs. Int J Biol Sci, 2010, 6: 190–191

    Article  Google Scholar 

  35. Lee K Y, Huang H, Ju B, et al. Cloned zebrafish by nuclear transfer from long-term-cultured cells. Nat Biotechnol, 2002, 20: 795–799

    Google Scholar 

  36. Sun Y H, Chen S P, Wang Y P, et al. Cytoplasmic impact on cross-genus cloned fish derived from transgenic common carp (Cyprinus carpio) nuclei and goldfish (Carassius auratus) enucleated eggs. Biol Reprod, 2005, 72: 510–515

    Article  Google Scholar 

  37. Luo D, Hu W, Chen S, et al. Identification of differentially expressed genes between cloned and zygote-developing zebrafish (Danio rerio) embryos at the dome stage using suppression subtractive hybridization. Biol Reprod, 2009, 80: 674–684

    Article  Google Scholar 

  38. Hu W, Zhu Z Y. Integration mechanisms of transgenes and population fitness of GH transgenic fish. Sci China Life Sci, 2010, 53: 401–408

    Article  Google Scholar 

  39. Luo D J, Hu W, Chen S P, et al. Critical developmental stages for the efficiency of somatic cell nuclear transfer in zebrafish. Int J Biol Sci, 2011, 7: 476–486

    Article  Google Scholar 

  40. Hong Y, Liu T, Zhao H, et al. Establishment of a normal medakafish spermatogonial cell line capable of sperm production in vitro. Proc Natl Acad Sci USA, 2004, 101: 8011–8016

    Article  Google Scholar 

  41. Hong N, Li Z, Hong Y. Fish Stem Cell Cultures. Int J Biol Sci, 2011, 7: 392–402

    Article  Google Scholar 

  42. Xu H, Li M, Gui J, et al. Fish germ cells. Sci China Life Sci, 2010, 53: 435–446

    Article  Google Scholar 

  43. Yi M, Hong N, Li Z, et al. Medaka fish stem cells and their applications. Sci China Life Sci, 2010, 53: 426–434

    Article  Google Scholar 

  44. Yi M, Hong N, Hong Y. Generation of medaka fish haploid embryonic stem cells. Science, 2009, 326: 430–433

    Article  Google Scholar 

  45. Takeuchi Y, Yoshizaki G, Takeuchi T. Biotechnology: Surrogate broodstock produces salmonids. Nature, 2004, 430: 629–630

    Article  Google Scholar 

  46. Okutsu T, Suzuki K, Takeuchi Y, et al. Testicular germ cells can colonize sexually undifferentiated embryonic gonad and produce functional eggs in fish. Proc Natl Acad Sci USA, 2006, 103: 2725–2729

    Article  Google Scholar 

  47. Okutsu T, Shikina S, Kanno M, et al. Production of trout offspring from triploid salmon parents. Science, 2007, 317: 1517

    Article  Google Scholar 

  48. Liu S. Distant hybridization leads to different ploidy fishes. Sci China Life Sci, 2010, 53: 416–425

    Article  Google Scholar 

  49. Gui J F. Genetic Basis and Artificial Control of Sexuality and Reproduction in Fish (in Chinese). Beijing: Science Press, 2007

    Google Scholar 

  50. Jalabert B. Particularities of reproduction and oogenesis in teleost fish compared to mammals. Reprod Nutr Dev, 2005, 45: 261–279

    Article  Google Scholar 

  51. Xie J, Wen J J, Chen B, et al. Differential gene expression in fully grown oocytes between gynogenetic and gonochoristic crucian carps. Gene, 2001, 271: 109–116

    Article  Google Scholar 

  52. Dong C H, Yang S T, Yang Z A, et al. A C-type lectin associated and translocated with cortical granules during oocyte maturation and egg fertilization in fish. Dev Biol, 2004, 265: 341–354

    Article  Google Scholar 

  53. Xu H Y, Gui J F, Hong Y H. Differential expression of vasa RNA and protein during spermatogenesis and oogenesis in the gibel carp (Carassius auratus gibelio), a bisexually and gynogenetically reproducing vertebrate. Dev Dyn, 2005, 233: 872–882

    Article  Google Scholar 

  54. Peng J X, Xie J L, Zhou L, et al. Evolutionary conservation of Dazl genomic organization and its continuous and dynamic distribution throughout germline development in gynogenetic gibel carp. J Exp Zool Part B, 2009, 312B: 855–871

    Article  Google Scholar 

  55. Xie J, Wen J J, Yang Z A, et al. Cyclin A2 is differentially expressed during oocyte maturation between gynogenetic silver crucian carp and gonochoristic color crucian carp. J Exp Zool, 2003, 295: 1–16

    Google Scholar 

  56. Chen B, Gui J F. Identification of a novel C1q family member in color crucian carp (Carassius auratus) ovary. Comp Biochem Phys B, 2004, 138: 285–293

    Article  Google Scholar 

  57. Mei J, Chen B, Yue H M, et al. Identification of a C1q family member associated with cortical granules and follicular cell apoptosis in Carassius auratus gibelio. Mol Cell Endocrinol, 2008, 289: 67–76

    Article  Google Scholar 

  58. Mei J, Zhang Q Y, Li Z, et al. C1q-like inhibits p53-mediated apoptosis and controls normal hematopoiesis during zebrafish embryogenesis. Dev Biol, 2008, 319: 273–284

    Article  Google Scholar 

  59. Wu N, Yue H M, Chen B, et al. Histone H2A has a novel variant in fish oocytes. Biol Reprod, 2009, 81: 275–283

    Article  Google Scholar 

  60. Wang X L, Sun M, Mei J, et al. Identification of a Spindlin homolog in gibel carp (Carassius auratus gibelio). Comp Biochem Physiol B Biochem Mol Biol, 2005, 141: 159–167

    Article  Google Scholar 

  61. Sun M, Li Z, Gui J F. Dynamic distribution of spindlin in nucleoli, nucleoplasm and spindle from primary oocytes to mature eggs and its critical function for oocyte-to-embryo transition in gibel carp. J Exp Zool, 2010, 313A: 461–473

    Article  Google Scholar 

  62. Mylonas C C, Fostier A, Zanuy S. Broodstock management and hormonal manipulations of fish reproduction. Gen Comp Endo, 2010, 165: 516–534

    Article  Google Scholar 

  63. Zohar Y, Muñoz-Cueto J A, Elizur A, et al. Neuroendocrinology of reproduction in teleost fish. Gen Comp Endocrinol, 2010, 165: 438–455

    Article  Google Scholar 

  64. Li W S, Lin H R. The endocrine regulation network of growth hormone synthesis and secretion in fish: Emphasis on the signal integration in somatotropes. Sci China Life Sci, 2010, 53: 462–470

    Article  Google Scholar 

  65. Li C J, Zhou L, Wang Y, et al. Molecular and expression characterization of three gonadotropin subunits commonα, FSHβ and LHβ in groupers. Mol Cell Endocrinol, 2005, 233: 33–46

    Article  Google Scholar 

  66. Cao H, Zhou L, Zhang Y Z, et al. Molecular characterization of Chinese sturgeon gonadotropins and cellular distribution in pituitaries of mature and immature individuals. Mol Cell Endocrinol, 2009, 303: 34–42

    Article  Google Scholar 

  67. Li S, Hu W, Wang Y, et al. Cloning and expression analysis in mature individuals of two chicken type-II GnRH (cGnRH-II) genes in common carp (Cyprinus carpio). Sci China Ser C-Life Sci, 2004, 47: 349–358

    Article  Google Scholar 

  68. Hu W, Li S, Tang B, et al. Antisense for gonadotropinreleasing hormone reduces gonadotropin synthesis and gonadal development in transgenic common carp (Cyprinus carpio). Aquaculture, 2007, 271: 498–506

    Article  Google Scholar 

  69. Xu J, Huang W, Zhong C, et al. Defining global gene expression changes of the hypothalamic-pituitary-gonadal axis in female sgnrh-antisense transgenic common carp (Cyprinus carpio). PLoS ONE, 2011, 6: e21057

    Article  Google Scholar 

  70. Brunner B, Hornung U, Shan Z, et al. Genomic organization and expression of the double-sex related gene cluster in vertebrates and detection of putative regulatory regions for DMRT1. Genomics, 2001, 77: 8–17

    Article  Google Scholar 

  71. Delvin R H, Nagahama Y. Sex determination and sex differentiation in fish. Aquaculture, 2002, 208: 191–364

    Article  Google Scholar 

  72. Matsuda M, Nagahama Y, Shinomiya A, et al. DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature, 2002, 417: 559–663

    Article  Google Scholar 

  73. Volff J N, Kondo M, Schartl M. Medaka dmY/dmrt1Y is not the universal primary sex-determining gene in fish. Trends Genet, 2003, 19: 196–199

    Article  Google Scholar 

  74. Herpin A, Schartl M. Dmrt1 genes at the crossroads: a widespread and central class of sexual development factors in fish. FEBS J, 2011, 278: 1010–1019

    Article  Google Scholar 

  75. Xia W, Zhou L, Yao B, et al. Differential and spermatogenic cell-specific expression of DMRT1 during sex reversal in protogynous hermaphroditic groupers. Mol Cell Endocrinol, 2007, 263: 156–172

    Article  Google Scholar 

  76. Jeong H B, Park J G, Park Y J, et al. Isolation and characterization of DMRT1 and its putative regulatory region in the protogynous wrasse, Halichoeres tenuispinis. Gene, 2009, 438: 8–16

    Article  Google Scholar 

  77. Huang X, Guo Y, Shui Y, et al. Multiple alternative splicing and differential expression of dmrt1 during gonad transformation of the rice field eel. Biol Reprod, 2005, 73: 1017–1024

    Article  Google Scholar 

  78. He C L, Du J L, Wu G C, et al. Differential Dmrt1 transcripts in gonads of theprotandrous black porgy, Acanthopagrus schlegeli. Cytogenet Genome Res, 2003, 101: 309–313

    Article  Google Scholar 

  79. Wu G C, Chiu P C, Lin C J, et al. Testicular dmrt1 is involved in the sexual fate of the ovotestis in the protandrous black porgy. Biol Reprod, 2012, 86: 41

    Article  Google Scholar 

  80. Liarte S, Chaves-Pozo E, Garcia-Alcazar A, et al. Testicular involution prior to sex change in gilthead seabream is characterized by a decrease in DMRT1 gene expression and by massive leukocyte infiltration. Reprod Biol Endocrinol, 2007, 5: 20

    Article  Google Scholar 

  81. Graves J A M. Weird animal genomes and the evolution of vertebrate sex and sex chromosomes. Annu Rev Genet, 2008, 42: 565–586

    Article  Google Scholar 

  82. Yao B, Zhou L, Wang Y, et al. Differential expression and dynamic changes of SOX3 during gametogenesis and sex inversion in protogynous hermaphroditic fish. J Exp Zool, 2007, 307A: 207–219

    Article  Google Scholar 

  83. Huang W, Zhou L, Li Z, et al. Expression pattern, cellular localization and promoter activity analysis of ovarian aromatase (Cyp19a1a) in protogynous hermaphrodite red-spotted grouper. Mol Cell Endocrinol, 2009, 307: 224–236

    Article  Google Scholar 

  84. Zhang Y, Zhang W, Yang H, et al. Two cytochrome P450 aromatase genes in the hermaphrodite rice field eel Monopterus albus: mRNA expression during ovarian development and sex change. J Endocrinol, 2010, 199: 317–331

    Article  Google Scholar 

  85. Guiguen Y, Fostier A, Piferrer F, et al. Ovarian aromatase and estrogens: a pivotal role for gonadal sex differentiation and sex change in fish. Gen Comp Endocrinol, 2010, 165: 352–366

    Article  Google Scholar 

  86. Zhou L, Gui J F. Molecular mechanisms underlying sex change in hermaphroditic groupers. Fish Physiol Biochem, 2010, 36: 181–193

    Article  Google Scholar 

  87. Arnold A P. The end of gonad-centric sex determination in mammals. Trends Genet, 2012, 28: 55–61

    Article  Google Scholar 

  88. Quinn A E, Sarre S D, Ezaz T, et al. Evolutionary transitions between mechanisms of sex determination in vertebrates. Biol Lett, 2011, 7: 443–448

    Article  Google Scholar 

  89. Mank J E. Small but mighty: the evolutionary dynamics of W and Y sex chromosomes. Chromosome Res, 2012, 20: 21–33

    Article  Google Scholar 

  90. Stöck M, Horn A, Grossen C, et al. Ever-young sex chromosomes in European tree frogs. PLoS Biology, 2011, 9: e1001062

    Article  Google Scholar 

  91. Yoshida K, Terai Y, Mizoiri S, et al. B chromosomes have a functional effect on female sex determination in lake victoria cichlid fishes. PLoS Genet, 2011, 7: e1002203

    Article  Google Scholar 

  92. Hughes J F, Skaletsky H, Pyntikova T, et al. Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content. Nature, 2010, 463: 536–539

    Article  Google Scholar 

  93. De-santis C, Jerry D R. candidate growth genes in finfish-Where should we be looking? Aquaculture, 2007, 272: 22–38

    Article  Google Scholar 

  94. Johnston I A, Bower N I, Macqueen D J. Growth and the regulation of myotomal muscle mass in teleost fish. J Exp Biol, 2011, 214: 1617–1628

    Article  Google Scholar 

  95. Li C J, Wei, Q W, et al. Molecular and expression characterization of two somatostatin genes in the Chinese sturgeon, Acipenser sinensis. Comp Biochem Physiol A Mol Integr Physiol, 2009, 154: 127–134

    Article  Google Scholar 

  96. Ye X, Li W S, Lin H R. Polygenic expression of somatostatin in orange-spotted grouper (Epinephelus coioides): molecular cloning and distribution of the mRNAs encoding three somatostatin. Mol Cell Endocrinol, 2005, 241: 62–72

    Article  Google Scholar 

  97. Zhang L, Li W S, Hong X, et al. Regulation of preprosomatostatin I (PSSI) gene expression by 17β-estradiol and identification of the PSSI promoter region in orange-spotted grouper (Epinephelus coioides). Mol Cell Endocrinol, 2009, 311: 87–93

    Article  Google Scholar 

  98. Liu Y, Lu D, Zhang Y, et al. The evolution of somatostatin in vertebrates. Gene, 2010, 463: 21–28

    Article  Google Scholar 

  99. Dong H, Li W, Lin H. Comparative analyses of sequence structure, evolution, and expression of four somatostatin receptors in orange-spotted grouper (Epinephelus coioides). Mol Cell Endocrinol, 2010, 323: 125–136

    Article  Google Scholar 

  100. Yan A F, Zhang L J, Tang Z G, et al. Orange-spotted grouper (Epinephelus coioides) orexin: Molecular cloning, tissue expression, ontogeny, daily rhythm and regulation of NPY gene expression. Peptides, 2011, 32: 1363–1370

    Article  Google Scholar 

  101. Li X, He J, Hu W, et al. The essential role of endogenous ghrelin in growth hormone expression during zebrafish adenohypophysis development. Endocrinol, 2009, 150: 2767–2774

    Article  Google Scholar 

  102. Li X, He J, Hu W, et al. Enhanced hyperplasia in muscles of transgenic zebrafish expressing Follistatin 1. Sci China Life Sci, 2011, 54: 159–165

    Article  Google Scholar 

  103. Zhang Q Y. A review of viral diseases of aquatic in China. Acta Hydrobiol Sin, 2002, 26: 93–101

    Google Scholar 

  104. Qiu T, Lu R H, Zhang J, et al. Complete nucleotide sequence of the S10 genome segment of grass carp reovirus (GCRV). Dis Aqua Org, 2001, 44: 69–74

    Article  Google Scholar 

  105. Yang F, He J, Lin X H, et al. Complete genome sequence of the shrimp white spot bacilliform virus. J Virol, 2001, 75: 11811–11820

    Article  Google Scholar 

  106. He J G, Deng M, Weng S P, et al. Complete genome analysis of the mandarin fish infectious spleen and kidney necrosis iridovirus. Virology, 2001, 291: 126–139

    Article  Google Scholar 

  107. Zhang Q Y, Xiao F, Xie J, et al. Complete genome sequence of lymphocystis disease virus (LCDV-C) isolated from China. J Virol, 2004, 78: 6982–6994

    Article  Google Scholar 

  108. Xie X X, Xu L M, Yang F. Proteomic analysis of the major envelope and nucleocapsid proteins of white spot syndrome virus. J Virol, 2006, 80: 10615–10623

    Article  Google Scholar 

  109. Zhou Q, Xu L, Li H, et al. Four major envelope proteins of white spot syndrome virus bind to form a complex. J Virol, 2009, 83: 4709–4712

    Article  Google Scholar 

  110. Zhao Z, Ke F, Huang Y H, et al. Identification and characterization of a novel envelope protein in Rana grylio virus. J Gen Virol, 2008, 89: 1866–1872

    Article  Google Scholar 

  111. Dong C F, Xiong X P, Shuang F, et al. Global landscape of structural proteins of infectious spleen and kidney necrosis virus. J Virol, 2011, 85: 2869–2877

    Article  Google Scholar 

  112. Zhao Z, Shi Y, Ke F, et al. Constitutive expression of thymidylate synthase from LCDV-C induces a transformed phenotype in fish cells. Virology, 2008, 372: 118–126

    Article  Google Scholar 

  113. Wang Z L, Xu X P, He B L, et al. Infectious spleen and kidney necrosis virus ORF48R functions as a new viral vascular endothelial growth factor. J Virol, 2008, 82: 4371–4383

    Article  Google Scholar 

  114. Zhang Y B, Zhang Q Y, Xu D Q, et al. Identification of antiviral-relevant genes in the cultured fish cells induced by UV-inactivated virus. Chin Sci Bull, 2003, 48: 581–588

    Article  Google Scholar 

  115. Zhang Y B, Gui J F. Molecular characterization and IFN signal pathway analysis of Carassius auratus CaSTAT1 identified from the cultured cells in response to virus infection. Dev Comp Immunol, 2004, 28: 211–227

    Article  Google Scholar 

  116. Zhang Y B, Gui J F. Identification and expression analysis of two IFN-inducible genes in crucian carp (Carassius auratus L.). Gene, 2004, 325: 43–51

    Article  Google Scholar 

  117. Hu C Y, Zhang Y B, Huang G P, et al. Molecular cloning and characterization of a fish PKR-like gene from the cultured CAB cells induced by UV-inactivated virus. Fish Shellfish Immunol, 2004, 17: 353–366

    Article  Google Scholar 

  118. Zhang Y B, Jiang J, Chen Y D, et al. The Innate Immune Response to Grass Carp Haemorrhagic Virus (GCHV) in Cultured Carassius auratus Blastulae (CAB) Cells. Dev Comp Immunol, 2007, 31: 232–243

    Article  Google Scholar 

  119. Zhang Y B, Wang Y L, Gui J F. Identification and characterisation of two homologs of interferon stimulated gene ISG15 in crucian carp. Fish Shellfish Immunol, 2007, 23: 52–61

    Article  Google Scholar 

  120. Shi Y, Zhang Y B, Zhao Z, et al. Molecular characterization and subcellular localization of Carassius auratus interferon regulatory factor-1. Dev Comp Immunol, 2008, 32: 134–146

    Article  Google Scholar 

  121. Jiang J, Zhang Y B, Li S, et al. Expression regulation and functional characterization of a novel interferon-inducible gene Gig2 and its promoter. Mol Immunol, 2009, 46: 3131–3140

    Article  Google Scholar 

  122. Yu F F, Zhang Y B, Liu T K, et al. Fish virus-induced interferon exerts antiviral function through Stat1 pathway. Mol Immunol, 2010, 47: 2330–2341

    Article  Google Scholar 

  123. Sun F, Zhang Y B, Liu T K, et al. Characterization of fish IRF3 as an IFN-inducible protein reveals evolving regulation of IFN response in vertebrates. J Immunol, 2010, 185: 7573–7582

    Article  Google Scholar 

  124. Sun F, Zhang Y B, Liu T K, et al. Fish MITA activation serves as a mediator for distinct fish IFN gene activation dependent on IRF3 or IRF7. J Immunol, 2011, 187: 2531–2539

    Article  Google Scholar 

  125. Zhu R, Zhang Y B, Zhang Q Y, et al. Functional domains and the antiviral effect of the double-stranded RNA-dependent protein kinase PKR from Paralichthys olivaceus. J Virol, 2008, 82: 6889–6901

    Article  Google Scholar 

  126. Liu T K, Zhang Y B, Liu Y, et al. Cooperative roles of fish PKZ and PKR in IFN-mediated antiviral response. J Virol, 2011, 85: 12769–12780

    Article  Google Scholar 

  127. Jin J Y, Zhou L, Wang Y, et al. Antibacterial and antiviral roles of a fish β-defensin expressed both in pituitary and testis. PLoS ONE, 2010, 5: e12883

    Article  Google Scholar 

  128. Wang S, Liu N, Chen A J, et al. TRBP homolog interacts with eukaryotic initiation factor 6 (eIF6) in Fenneropenaeus chinensis. J Immunol. 2009, 182: 5250–5258

    Article  Google Scholar 

  129. Zhao Z Y, Yin Z X, Xu X P, et al. A novel C-type lectin from the shrimp Litopenaeus vannamei possesses anti-white spot syndrome virus activity. J Virol, 2009, 83: 347–356

    Article  Google Scholar 

  130. Chen A J, Wang S, Zhao X F, et al. Enzyme E2 from Chinese white shrimp inhibits replication of white spot syndrome virus and ubiquitinates its RING domain proteins. J Virol, 2011, 85: 8069–8079

    Article  Google Scholar 

  131. Chang M, Collet B, Nie P, et al. Expression and functional characterization of the RIG-I-like receptors MDA5 and LGP2 in Rainbow trout (Oncorhynchus mykiss). J Virol, 2011, 85: 8403–8412

    Article  Google Scholar 

  132. Barrett R D, Paccard A, Healy T M, et al. Rapid evolution of cold tolerance in stickleback. Proc Biol Sci, 2011, 278: 233–238

    Article  Google Scholar 

  133. Chen Z, Cheng C H, Zhang J, et al. Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish. Proc Natl Acad Sci USA, 2008, 105: 12944–12949

    Article  Google Scholar 

  134. Xu Q, Cheng C H, Hu P, et al. Adaptive evolution of hepcidin genes in antarctic notothenioid fishes. Mol Biol Evol, 2008, 25: 1099–1112

    Article  Google Scholar 

  135. Deng C, Cheng C H, Ye H, et al. Evolution of an antifreeze protein by neofunctionalization under escape from adaptive conflict. Proc Natl Acad Sci USA, 2010, 107: 21593–21598

    Article  Google Scholar 

  136. Bickler E, Buck T. Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability. Annu Rev Physiol, 2007, 69: 145–170

    Article  Google Scholar 

  137. Lushchak V I. Adaptive response to oxidative stress: Bacteria, fungi, plants and animals. Comp Biochem Physiol C Toxicol Pharmacol, 2011, 153: 175–190

    Article  Google Scholar 

  138. Zhong X P, Wang D, Zhang Y B, et al. Identification and characterization of hypoxia-induced genes in Carassius auratus blastulae embryonic cells using suppression subtractive hybridization. Comp Biochem Physiol B, 2009, 152: 161–170

    Article  Google Scholar 

  139. Wang D, Zhong X P, Qiao Z X, et al. Inductive transcription and protective role of fish heme oxygenase-1 under hypoxic stress. J Exp Biol, 2008, 211: 2700–2706

    Article  Google Scholar 

  140. Sun C F, Tao Y, Jiang X Y, et al. IGF binding protein 1 is correlated with hypoxia-induced growth reduce and developmental defects in grass carp (Ctenopharyngodon idellus) embryos. Gen Comp Endocrinol, 2011, 172: 409–415

    Article  Google Scholar 

  141. Feng X, Liu X, Zhang W, et al. p53 directly suppresses BNIP3 expression to protect against hypoxia-induced cell death. EMBO J, 2011, 30: 3397–3415

    Article  Google Scholar 

  142. Guan B, Ma H, Wang Y, et al. Vitreoscilla hemoglobin (VHb) overexpression increases hypoxia tolerance in zebrafish (Danio rerio). Mar Biotechnol (NY), 2011, 13: 336–344

    Article  Google Scholar 

  143. Liu Z J. Fish genomics and analytical genetic technologies, with examples of their potential applications in management of fish genetic resources. In: Bartley D M, Harvey B J, Pullin R S V, eds. Workshop on Status and Trends in Aquatic Genetic Resources: a basis for international policy. Food and Agriculture Organization of the United Nations, Rome, 2007. 145–178

    Google Scholar 

  144. McAndrew B, Napier J. Application of genetics and genomics to aquaculture development: current and future directions. J Agric Sci, 2010, 149: 143–151

    Article  Google Scholar 

  145. Abernathy J W, Peatman E, Liu Z J. Basic aquaculture genetics. SRAC Publication No. 5001. 2010, 1–16

  146. Wang Z W, Zhu H P, Wang D, et al. A novel nucleo-cytoplasmic hybrid clone formed via androgenesis in polyploid gibel carp. BMC Res Notes, 2011, 4: 82

    Article  Google Scholar 

  147. Liu H Q, Cui S Q, Hou C C, et al. YY supermale generated gynogenetically from XY female in Pelteobagrus fulvidraco (Richardson). Acta Hydrobiol Sin, 2007, 31: 718–725

    Google Scholar 

  148. Wang D, Mao H L, Chen H X, et al. Isolation of Y- and X-linked SCAR markers in yellow catfish and application in the production of all-male populations. Anim Genet, 2009, 40: 978–981

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China

    JianFang Gui & ZuoYan Zhu

Authors
  1. JianFang Gui
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. ZuoYan Zhu
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to JianFang Gui.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Gui, J., Zhu, Z. Molecular basis and genetic improvement of economically important traits in aquaculture animals. Chin. Sci. Bull. 57, 1751–1760 (2012). https://doi.org/10.1007/s11434-012-5213-0

Download citation

  • Received: 24 February 2012

  • Accepted: 27 February 2012

  • Published: 08 May 2012

  • Issue Date: May 2012

  • DOI: https://doi.org/10.1007/s11434-012-5213-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • aquaculture genome technology
  • somatic cell nuclear transfer
  • stem cell technology
  • reproduction-related gene
  • sex determination gene
  • growth-related gene
  • disease resistance-related genes
  • cold tolerance-related gene
  • hypoxia tolerance-related gene
  • genetic improvement
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.