Skip to main content

Shock wave compression of poled Pb0.99[(Zr0.90Sn0.10)0.96Ti0.04]0.98Nb0.02O3 ceramics: Depoling currents in axial and normal modes


We used a 100-mm diameter gas gun to investigate the output currents due to the sudden depolarization of poled Pb0.99-[(Zr0.90Sn0.10)0.96Ti0.04]0.98Nb0.02O3 ceramics under shock wave compression. We conducted shock wave experiments for the normal/ axial mode with the polarization vector perpendicular/antiparallel to the shock vector. The shock pressure was in the range of 0.23 to 4.50 GPa. We measured the depoling currents under short-circuit, high-impedance, and breakdown conditions. Under the short-circuit condition, the dependence of the released charge on the shock pressure demonstrates the evolution of the ferroelectric-to-antiferroelectric phase transition. The onset pressure of the phase transition is between 0.23 and 0.61 GPa, and phase transition occurs completely above 1.22 GPa. The increasing load resistance decreases the released charge and increases the released energy. The results indicate that Pb0.99[(Zr0.90Sn0.10)0.96Ti0.04]0.98Nb0.02O3 ceramic is a good candidate for a pulsed power generator.


  1. 1

    Tan X, Frederick J, Ma C, et al. Can an electric field induce an antiferroelectric phase out of a ferroelectric phase? Phys Rev Lett, 2010, 105: 255702

    Article  Google Scholar 

  2. 2

    He H, Tan X. In situ transmission electron microscopy study of the electric field-induced transformation of incommensurate modulations in a Sn-modified lead zirconate titanate ceramic. Appl Phys Lett, 2004, 85: 3187–3189

    Article  Google Scholar 

  3. 3

    He H, Tan X. Electric field-induced transformation of incommensurate modulations in antiferroelectric Pb0.99Nb0.02[(Zr1−x Snx)1−y Tiy]0.98O3. Phys Rev B, 2005, 72: 024102

    Article  Google Scholar 

  4. 4

    He H, Tan X. Raman spectroscopy study of the phase transitions in Pb0.99Nb0.02[(Zr0.57Sn0.43)1−y Tiy]0.98O3 ceramics. J Phys: Condens Matter, 2007, 19: 136003

    Article  Google Scholar 

  5. 5

    Tan X, Jo W, Granzow T, et al. Auxetic behavior under electrical loads in an induced ferroelectric phase. Appl Phys Lett, 2009, 94: 042909

    Article  Google Scholar 

  6. 6

    Tan X, Frederick J, Ma C, et al. Electric-field-induced antiferroelectric to ferroelectric phase transition in mechanically confined Pb0.99-Nb0.02[(Zr0.57Sn0.43)0.94Ti0.06]0.98O3. Phys Rev B, 2010, 81: 014103

    Article  Google Scholar 

  7. 7

    Frederick J, Tan X, Jo W. Strains and polarization during antiferroelectric-ferroelectric phase switching in Pb0.99Nb0.02[(Zr0.57Sn0.43)1−y -Tiy]0.98O3 ceramics. J Am Ceram Soc, 2011, 94: 1149–1155

    Article  Google Scholar 

  8. 8

    Pan W, Zhang Q, Bhalla A, et al. Field-forced antiferroelectric-to-ferroelectric switching in modified lead zirconate titanate stannate ceramics. J Am Ceram Soc, 1989, 72: 571–578

    Article  Google Scholar 

  9. 9

    Xu Z, Feng Y J, Zheng S G, et al. Phase transition and dielectric properties of La-doped Pb(Zr,Sn,Ti)O3 antiferroelectric ceramics under hydrostatic pressure and temperature. J Appl Phys, 2002, 92: 2663–2667

    Article  Google Scholar 

  10. 10

    Viehland D, Forst D, Xu Z, et al. Incommensurately modulated polar structures in antiferroelectric Sn-modified lead zirconate titanate the modulated structure and its influences on electrically-induced polarizations and strains. J Am Ceram Soc, 1995, 78: 2101–2112

    Article  Google Scholar 

  11. 11

    Pan W Y, Dam C Q, Zhang Q M, et al. Large displacement transducers based on electric field forced phase transitions in the tetragonal (Pb0.97La0.02)(Ti,Zr,Sn)O3 family of ceramics. J Appl Phys, 1989, 66: 6014–6023

    Article  Google Scholar 

  12. 12

    Berlincourt D, Jaffe H, Krueger H H A, et al. Release of electric energy in PbNb(Zr,Ti,Sn)O3. Appl Phys Lett, 1963, 3: 90–92

    Article  Google Scholar 

  13. 13

    Berlincourt D, Krueger H H A, Jaffe B. Stability of phases in modified lead zirconate with variation in pressure, electric field, temperature and composition. J Phys Chem Solids, 1964, 25: 659–674

    Article  Google Scholar 

  14. 14

    Fritz I J. Stress effects in two modified lead zirconate titanate ferroelectric ceramics. J Appl Phys, 1979, 50: 5265–5271

    Article  Google Scholar 

  15. 15

    Fritz I J, Keck J D. Pressure-temperature phase diagrams for several modified lead zirconate ceramics. J Phys Chem Solids, 1978, 39: 1163–1167

    Article  Google Scholar 

  16. 16

    Yang P, Payne D A. The effect of external field symmetry on the antiferroelectric-ferroelectric phase transformation. J Appl Phys, 1996, 80: 4001–4005

    Article  Google Scholar 

  17. 17

    Xu Z, Feng Y J, Zheng S G, et al. Phase transition and dielectric properties of La-doped Pb(Zr,Sn,Ti)O3 antiferroelectric ceramics under hydrostatic pressure. Mater Sci Eng B, 2003, 99: 441–444

    Article  Google Scholar 

  18. 18

    Xu C N, Akiyama M, Nonaka K, et al. Electrical power generation characteristics of PZT piezoelectric ceramics. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1998, 45: 1065–1070

    Article  Google Scholar 

  19. 19

    Kadau K, Germann T C, Lomdahl P S, et al. Microscopic view of structural phase transitions induced by shock waves. Science, 2002, 296: 1681–1684

    Article  Google Scholar 

  20. 20

    Neilson F W. Effects of strong shocks in ferroelectric materials. Bull Am Phys Soc, 1957, 2: 302

    Google Scholar 

  21. 21

    Millett J C F, Bourne N K, Deas D. The response of two ferroelectric ceramics to one-dimensional shock loading. J Phys D: Appl Phys, 2007, 40: 2948–2953

    Article  Google Scholar 

  22. 22

    Walsh J M, Rice M H, McQueen R G, et al. Shock-wave compressions of twenty-seven metals equations of state of metals. Phys Rev, 1957, 108: 196–216

    Article  Google Scholar 

  23. 23

    Barker L M, Hollenbach R E. Shock-wave studies of PMMA, fused silica, and sapphire. J Appl Phys, 1970, 41: 4208–4226

    Article  Google Scholar 

  24. 24

    Doran D G. Shock-wave compression of barium titanate and 95/5 lead zirconate titanate. J Appl Phys, 1968, 39: 40–47

    Article  Google Scholar 

  25. 25

    Halpin W J. Current from a shock-loaded short-circuited ferroelectric ceramic disk. J Appl Phys, 1966, 37: 153–163

    Article  Google Scholar 

  26. 26

    Liu Y S, Liu G M, Zhang F P, et al. Experimental study of the depoling property of PZT-95/5 ferroelectric ceramic under shock wave loading (in Chinese). Piezoelectr Acoustoopt, 2008, 30: 58–60

    Google Scholar 

  27. 27

    Lysne P C. Dielectric properties of shock-wave-compressed PZT 95/5. J Appl Phys, 1977, 48: 1020–1023

    Article  Google Scholar 

  28. 28

    Setchell R E. Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3: Depoling currents. J Appl Phys, 2005, 97: 013507

    Article  Google Scholar 

  29. 29

    Mock W Jr, Holt W H. Axial current mode shock depoling of PZT 56/44 ferroelectric ceramic disks. J Appl Phys, 1979, 50: 2740–2748

    Article  Google Scholar 

  30. 30

    Halpin W J. Resistivity estimates for some shocked ferroelectrics. J Appl Phys, 1968, 39: 3821–3826

    Article  Google Scholar 

  31. 31

    Lysne P C. Resistivity of shock-wave-compressed PZT 95/5. J Appl Phys, 1977, 48: 4565–4568

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to DongDong Jiang.

Additional information

This article is published with open access at

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Jiang, D., Du, J., Gu, Y. et al. Shock wave compression of poled Pb0.99[(Zr0.90Sn0.10)0.96Ti0.04]0.98Nb0.02O3 ceramics: Depoling currents in axial and normal modes. Chin. Sci. Bull. 57, 2554–2561 (2012).

Download citation


  • shock wave
  • ferroelectric
  • antiferroelectric
  • phase transition