Chinese Science Bulletin

, Volume 57, Issue 19, pp 2352–2360 | Cite as

C-H bond amination by iron-imido/nitrene species

  • Long Zhang
  • Liang DengEmail author
Open Access
Review Special Topic Iron Catalysis in Synthetic Organic Chemistry


C-H amination by iron-imido/nitrene species has attracted increasing research interest in recent years because of its potential use in economical and environmentally benign syntheses of amino compounds. With the aim of providing a comprehensive overview of this field, which is of interest to both the synthetic organic and inorganic communities, this paper reviews the status quo of C-H amination chemistry by iron-imido/nitrene intermediates, as well as by well-defined iron-imido/nitrene compounds, with special emphasis on their structure/reactivity correlations. Achievements, problems, and perspectives in this growing field are discussed.


iron nitrene imido C-H amination C-H activation 


  1. 1.
    Ricci A. Amino Group Chemistry. Weinheim: Wiley-VCH, 2008Google Scholar
  2. 2.
    Moody C J. In Comprehensive Organic Synthesis. Oxford: Pergamon Press, 1992. 21–38Google Scholar
  3. 3.
    Lowski W. Nitrene. New York: Interscience, 1970Google Scholar
  4. 4.
    Dauban P, Dodd R H. In Amino Group Chemistry. Weinheim: Wiley-VCH, 2008. 55–92Google Scholar
  5. 5.
    Nugent W A, Mayer J M. Metal-Ligand Multiple Bonds, the Chemistry of Transition Metal Complexes Containing Oxo, Nitrido, Imido, Alkylidyne Ligands. New York: Wiley, 1988Google Scholar
  6. 6.
    Eikey R A, Abu-Omar M M. Nitrido and imido transition metal complexes of groups 6–8. Coord Chem Rev, 2003, 243: 83–124CrossRefGoogle Scholar
  7. 7.
    Li Y, Wong W T. Low valent transition metal clusters containing nitrene/imido ligands. Coord Chem Rev, 2003, 243: 191–212CrossRefGoogle Scholar
  8. 8.
    Berry J F. Terminal nitrido and imido complexes of the late transition metals. Comments Inorg Chem, 2009, 30: 28–66CrossRefGoogle Scholar
  9. 9.
    Mehn M P, Peters J C. Mid- to high-valent imido and nitrido complexes of iron. J Inorg Biochem, 2006, 100: 634–643CrossRefGoogle Scholar
  10. 10.
    Sun S L, Li B J, Shi Z J. Direct C-H transformation via iron catalysis. Chem Rev, 2011, 111: 1293–1314CrossRefGoogle Scholar
  11. 11.
    Che C M, Zhou C Y, Wong E L M. Catalysis by Fe==X Complexes (X=N-R, CR2). Top Organomet Chem, 2011, 33: 111–138CrossRefGoogle Scholar
  12. 12.
    Che C M, Lo V K Y, Zhou C Y, et al. Selective functionalisation of saturated C-H bonds with metalloporphyrin catalysts. Chem Soc Rev, 2011, 40: 1950–1975CrossRefGoogle Scholar
  13. 13.
    Plietker B. Iron Catalysis in Organic Chemistry. Weinheim: Wiley-VCH, 2008CrossRefGoogle Scholar
  14. 14.
    Beller M, Bolm C. Transition Metals for Organic Synthesis. 2nd ed. Weinheim: Wiley-VCH, 2004CrossRefGoogle Scholar
  15. 15.
    Jana R, Pathak T P, Sigma M S. Advances in transition metal (Pd,Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem Rev, 2011, 111: 1417–1492CrossRefGoogle Scholar
  16. 16.
    Plietker B. Sustainability in catalysis-concept or contradiction? Synlett, 2010, 2049–2058Google Scholar
  17. 17.
    Liu L X. Recent use of iron catalysts in organic reactions. Curr Org Chem, 2010, 14: 1099–1126CrossRefGoogle Scholar
  18. 18.
    Nakamura E, Yoshikai N. Low-valent iron-catalyzed C-C bond formation-addition, substitution, and C-H bond activation. J Org Chem, 2010, 75: 6061–6067CrossRefGoogle Scholar
  19. 19.
    Czaplik W M, Mayer M, Cvengros J, et al. Coming of age: Sustainable iron-catalyzed cross-coupling reactions. ChemSusChem, 2009, 2: 396–417CrossRefGoogle Scholar
  20. 20.
    Enthaler S, Junge K, Beller M. Sustainable metal catalysis with iron: From rust to a rising star? Angew Chem Int Ed, 2008, 47: 3317–3321CrossRefGoogle Scholar
  21. 21.
    Sherry B D, Fürstner A. The promise and challenge of iron-catalyzed cross coupling. Acc Chem Res, 2008, 41: 1500–1511CrossRefGoogle Scholar
  22. 22.
    Correa A, García Mancheño O, Bolm C. Iron-catalysed carbon-heteroatom and heteroatom-heteroatom bond forming processes. Chem Soc Rev, 2008, 37: 1108–1117CrossRefGoogle Scholar
  23. 23.
    Greck C, Drouillat B, Thomassigny C. Asymmetric electrophilic α-amination of carbonyl groups. Eur J Org Chem, 2004: 1377–1385Google Scholar
  24. 24.
    Janey J M. Recent advances in catalytic, enantioselective α aminations and α oxygenations of carbonyl compounds. Angew Chem Int Ed, 2005, 44: 4292–4300CrossRefGoogle Scholar
  25. 25.
    Johannsen M, Jørgensen K A. Allylic amination. Chem Rev, 1998, 98: 1689–1708CrossRefGoogle Scholar
  26. 26.
    Srivastava R S, Khan M A, Nicholas K M. A novel intermediate in allylic amination catalyzed by iron salts. J Am Chem Soc, 1996, 118: 3311–3312CrossRefGoogle Scholar
  27. 27.
    Srivastava R S, Nicholas K M. On the mechanism of allylic amination catalyzed by iron salts. J Am Chem Soc, 1997, 119: 3302–3310CrossRefGoogle Scholar
  28. 28.
    Srivastava R S, Nicholas K M. Iron-catalyzed allylic amination by nitroorganics. Chem Commun, 1998, 2705–2706Google Scholar
  29. 29.
    Kolel-Veetil M, Khan M A, Nicholas K M. A cyclic carbamoyl complex is a resting state in allylic aminations catalyzed by [Cp*Fe(CO)2]2. Organometllics, 2000, 19: 3754–3756CrossRefGoogle Scholar
  30. 30.
    Singh S, Nicholas K M. 2,4-Dinitrophenylhydroxylamine: An efficient and more general reagent for iron-catalyzed allylic amination. Synth Commun, 2001, 31: 3087–3097CrossRefGoogle Scholar
  31. 31.
    Srivastava R S, Kolel-Veetil M, Nicholas K M. Photoassisted, iron-catalyzed allylic amination of olefins with nitroarenes. Tetrahedron Lett, 2002, 43: 931–934CrossRefGoogle Scholar
  32. 32.
    Srivastava R S, Khan M A, Nicholas K M. Preparation and molecular structure of [(η5-C5H5)Fe(CO)21-PhNO2)]BF4. Inorg Chim Acta, 2003, 349: 269–272CrossRefGoogle Scholar
  33. 33.
    Stephens J C, Khan M A, Nicholas K M. Cyclopentadienyliron complexes of nitrosobenzene: Preparation, structure and reactivity with olefins. J Organomet Chem, 2005, 690: 4727–4733CrossRefGoogle Scholar
  34. 34.
    Srivastava R S. Photo-induced iron-catalyzed allylic amination of unfunctionalized olefins with nitroarenes. Appl Organomet Chem, 2006, 20: 851–854CrossRefGoogle Scholar
  35. 35.
    Breslow R B, Gellman S H. Tosylamidation of cyclohexane by a cytochrome P-450 model. J Chem Soc Chem Commun, 1982, 1400–1411Google Scholar
  36. 36.
    Breslow R B, Gellman S H. Intramolecular nitrene carbon-hydrogen insertions mediated by transition-metal complexes as nitrogen analogs of cytochrome P-450 reactions. J Am Chem Soc, 1983, 105: 6728–6729CrossRefGoogle Scholar
  37. 37.
    Svastits E W, Dawson J H, Breslow R B, et al. Functionalized nitrogen atom transfer catalyzed by cytochrome P-450. J Am Chem Soc, 1985, 107: 6427–6428CrossRefGoogle Scholar
  38. 38.
    Mahy J P, Bedi G, Battioni P, et al. Animation of alkanes catalyzed by iron and manganese-porphyrins: Particular selectivity for oxidations of linear alkanes. New J Chem, 1989, 13: 651–657Google Scholar
  39. 39.
    Yan S Y, Wang Y, Shu Y J, et al. Nitrene transfer reaction catalyzed by substituted metallophthalocyanines. J Mol Catal A-Chem, 2006, 248: 148–151CrossRefGoogle Scholar
  40. 40.
    Liu Y, Che C M. [FeIII(F20-tpp)Cl] is an effective catalyst for nitrene transfer reactions and amination of saturated hydrocarbons with sulfonyl and aryl azides as nitrogen source under thermal and microwave-assisted conditions. Chem Eur J, 2010, 16: 10494–10501CrossRefGoogle Scholar
  41. 41.
    Mansuy D, Battioni P, Mahy J P. Isolation of an iron-nitrene complex from the dioxygen- and iron porphyrin-dependent oxidation of a hydrazine. J Am Chem Soc, 1982, 104: 4487–4489CrossRefGoogle Scholar
  42. 42.
    Mahy J P, Battioni P, Mansuy D, et al. Iron porphyrin-nitrene complexes: Preparation from 1,1-dialkylhydrazines. Electronic structure from NMR, Moessbauer, and magnetic susceptibility studies and crystal structure of the [tetrakis(p-chlorophenyl)porphyrinato][(2,2,6,6-tetramethyl-1-piperidyl)nitrene]iron complex. J Am Chem Soc, 1984, 106: 1699–1706CrossRefGoogle Scholar
  43. 43.
    Mahy J P, Battioni P, Bedi G, et al. Iron-porphyrin-nitrene complexes: Preparation, properties, and crystal structure of porphyrin-iron(III) complexes with a tosylnitrene inserted into an iron-nitrogen bond. Inorg Chem, 1988, 27: 353–359CrossRefGoogle Scholar
  44. 44.
    Dey A, Ghosh A. “True” iron(V) and iron(VI) porphyrins: A first theoretical exploration. J Am Chem Soc, 2002, 124: 3206–3207CrossRefGoogle Scholar
  45. 45.
    Moreau Y, Chen H, Derat E, et al. NR transfer reactivity of azocompound I of P450. How does the nitrogen substituent tune the reactivity of the species toward C-H and C==C activation? J Phys Chem B, 2007, 111: 10288–10299CrossRefGoogle Scholar
  46. 46.
    Barton D H R, Hay-Motherwell R S, Motherwell W B. Functionalisation of saturated hydrocarbons. Part 1. Some reactions of a ferrous chloride-chloramine-T complex with hydrocarbons. J Chem Soc Perkin Trans 1, 1983: 445–451CrossRefGoogle Scholar
  47. 47.
    Wang Z, Zhang Y, Fu H, et al. Efficient intermolecular iron-catalyzed amidation of C-H bonds in the presence of N-bromosuccinimide. Org Lett, 2008, 10: 1863–1866CrossRefGoogle Scholar
  48. 48.
    Jensen M P, Mehn M P, Que Jr L. Intramolecular aromatic amination through iron-mediated nitrene transfer. Angew Chem Int Ed, 2003, 42: 4357–4360CrossRefGoogle Scholar
  49. 49.
    Avenier F, Gouré E, Dubourdeaux P, et al. Multiple aromatic amination mediated by a diiron complex. Angew Chem Int Ed, 2008, 47: 715–717CrossRefGoogle Scholar
  50. 50.
    Jana S, Clements M D, Sharp B K, et al. Fe(II)-catalyzed amination of aromatic C-H bonds via ring opening of 2H-azirines: Synthesis of 2,3-disubstituted indoles. Org Lett, 2010, 12: 3736–3739CrossRefGoogle Scholar
  51. 51.
    Bonamour J, Bolm C. Iron(II) triflate as a catalyst for the synthesis of indoles by intramolecular C-H amination. Org Lett, 2011, 13: 2012–2014CrossRefGoogle Scholar
  52. 52.
    Lucas R L, Powell D R, Borovik A S. Preparation of iron amido complexes via putative Fe(IV) imido intermediates. J Am Chem Soc, 2005, 127: 11596–11597CrossRefGoogle Scholar
  53. 53.
    Mankad N P, Müller P, Peters J C. Catalytic N-N coupling of aryl azides to yield azoarenes via trigonal bipyramid iron-nitrene intermediates. J Am Chem Soc, 2010, 132: 4083–4085CrossRefGoogle Scholar
  54. 54.
    Ni C, Fettinger J C, Long G J, et al. Reaction of a sterically encumbered iron(I) aryl/arene with organoazides: Formation of an iron(V) bis(imide). Chem Commun, 2008, 6045–6047Google Scholar
  55. 55.
    Eckert N A, Vaddadi S, Stoian S, et al. Coordination-number dependence of reactivity in an imidoiron(III) complex. Angew Chem Int Ed, 2006, 45: 6868–6871CrossRefGoogle Scholar
  56. 56.
    Cowley R E, Eckert N A, Vaddadi S, et al. Selectivity and mechanism of hydrogen atom transfer by an isolable imidoiron(III) complex. J Am Chem Soc, 2011, 133: 9796–9811CrossRefGoogle Scholar
  57. 57.
    Cowley R E, Holland P L. C-H activation by a terminal imidoiron(III) complex to form a cyclopentadienyliron(II) product. Inorg Chim Acta, 2011, 369: 40–44CrossRefGoogle Scholar
  58. 58.
    Holland P L. Electronic structure and reactivity of three-coordinate iron complexes. Acc Chem Res, 2008, 41: 905–914CrossRefGoogle Scholar
  59. 59.
    King E R, Betley T A. C-H bond amination from a ferrous dipyrromethene complex. Inorg Chem, 2009, 48: 2361–2363CrossRefGoogle Scholar
  60. 60.
    King E R, Hennessy E T, Betley T A. Catalytic C-H bond amination from high-spin iron imido complexes. J Am Chem Soc, 2011, 133: 4917–4923CrossRefGoogle Scholar
  61. 61.
    Liu P, Wong E L M, Yuen A W H, et al. Highly efficient alkene epoxidation and aziridination catalyzed by iron(II) salt + 4,4′,4″-trichloro-2,2′:6′,2″-terpyridine/4,4″-dichloro-4′-O-PEG-OCH3-2,2′:6′,2″-terpyridine. Org Lett, 2008, 10: 3275–3278CrossRefGoogle Scholar
  62. 62.
    Ton T M U, Tejo C, Tania S, et al. Iron(II)-catalyzed amidation of aldehydes with iminoiodinanes at room temperature and under microwave-assisted conditions. J Org Chem, 2011, 76: 4894–4904CrossRefGoogle Scholar
  63. 63.
    Chen G Q, Xu Z J, Liu Y, et al. Iron-catalyzed nitrene insertion reaction for facile construction of amide compounds. Synlett, 2011, 1174–1178Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina

Personalised recommendations