Skip to main content
Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Chinese Science Bulletin
  3. Article

Electronic transport properties of capped-carbon-nanotube-based molecular junctions with multiple N and B dopants

  • Letter
  • Condensed Matter Physics
  • Open access
  • Published: 11 April 2012
  • Volume 57, pages 2073–2077, (2012)
  • Cite this article
Download PDF

You have full access to this open access article

Chinese Science Bulletin
Electronic transport properties of capped-carbon-nanotube-based molecular junctions with multiple N and B dopants
Download PDF
  • Peng Zhao1 &
  • DeSheng Liu2 
  • 720 Accesses

  • 2 Citations

  • Explore all metrics

Abstract

By applying non-equilibrium Green’s function in combination with density functional theory, we investigated the electronic transport properties of capped-carbon-nanotube-based molecular junctions with multiple N and B dopants. The results show that the electronic transport properties are strongly dependent on the numbers and positions of N and B dopants. Best rectifying behavior is observed in the case with one N and one B dopants, and it is deteriorated strongly with the increasing dopants. The rectifying direction is even reversed with the change of doping positions. Moreover, obvious negative differential resistance behavior at very low bias is observed in some doping cases.

Article PDF

Download to read the full article text

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Atomic and Molecular Structure and Properties
  • Electronic Materials
  • Gap Junctions
  • Molecular Electronics
  • Carbon Nanotubes and Fullerenes
  • Two-dimensional Electronic Properties
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Iijima S. Nature, 1991, 354: 56–58

    Article  Google Scholar 

  2. Zhang Z Y, Liang X L, Wang S, et al. Nano Lett, 2007, 7: 3603–3607

    Article  Google Scholar 

  3. Zhao P, Wang P J, Zhang Z, et al. Phys Lett A, 2010, 374: 1167–1171

    Article  Google Scholar 

  4. Zhao P, Wang P J, Zhang Z, et al. Solid State Commun, 2009, 149: 928–931

    Article  Google Scholar 

  5. Khazaei M, Lee S U, Pichierri F, et al. J Phys Chem C, 2007, 111: 12175–12180

    Article  Google Scholar 

  6. Shin K, Jeon H, Park C E, et al. Org Electron, 2010, 11: 1403–1407

    Article  Google Scholar 

  7. Zhou C W, Kong J, Yenilmez E, et al. Science, 2000, 290: 1552–1555

    Article  Google Scholar 

  8. Bachtold A, Hadley P, Nakanishi T, et al. Science, 2001, 294: 1317–1320

    Article  Google Scholar 

  9. Stephan O, Ajayan P M, Colliex C, et al. Science, 1994, 266: 1683–1685

    Article  Google Scholar 

  10. Terrones M, Benito A M, Manteca-Diego C, et al. Chem Phys Lett, 1996, 257: 576–582

    Article  Google Scholar 

  11. Yu J, Ahn J, Yoon S F, et al. Appl Phys Lett, 2000, 77: 1949–1951

    Article  Google Scholar 

  12. Han W, Bando Y, Kurashima K, et al. Chem Phys Lett, 1999, 299: 368–373

    Article  Google Scholar 

  13. Zhao P, Liu D S. Chin Sci Bull, 2010, 55: 4104–4107

    Article  Google Scholar 

  14. Zhao P, Liu D S, Zhang Y, et al. Chin Phys Lett, 2011, 28: 047301

    Article  Google Scholar 

  15. Soler J M, Artacho E, Gale J D, et al. J Phys: Condens Matter, 2002, 14: 2745–2779

    Article  Google Scholar 

  16. Taylor J, Guo H, Wang J. Phys Rev B, 2001, 63: 245407

    Article  Google Scholar 

  17. Brandbyge M, Mozos J L, Ordejón P, et al. Phys Rev B, 2002, 65: 165401

    Article  Google Scholar 

  18. Brown E R, Söderström J R, Parker C D, et al. Appl Phys Lett, 1991, 58: 2291–2293

    Article  Google Scholar 

  19. Broekaert T P E, Brar B, Van der Wagt J P A, et al. IEEE J Solid State Circuits, 1998, 33: 1342–1349

    Article  Google Scholar 

  20. Mathews R H, Sage J P, Sollner T C L G, et al. Proc IEEE, 1999, 87: 596–605

    Article  Google Scholar 

  21. Chen J, Reed M A, Rawlett A M, et al. Science, 1999, 286: 1550–1552

    Article  Google Scholar 

  22. Long M Q, Chen K Q, Wang L L, et al. Appl Phys Lett, 2008, 92: 243303

    Article  Google Scholar 

  23. An Y P, Yang C L, Wang M S, et al. J Phys Chem C, 2009, 113: 15756–15760

    Article  Google Scholar 

  24. Zhao P, Fang C F, Xia C J, et al. Appl Phys Lett, 2008, 93: 013113

    Article  Google Scholar 

  25. Shi X Q, Dai Z X, Zheng X H, et al. J Phys Chem B, 2006, 110: 16902–16907

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. School of Physics and Technology, University of Jinan, Jinan, 250022, China

    Peng Zhao

  2. State Key Laboratory of Crystal Materials, School of Physics, Shandong University, Jinan, 250100, China

    DeSheng Liu

Authors
  1. Peng Zhao
    View author publications

    Search author on:PubMed Google Scholar

  2. DeSheng Liu
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Peng Zhao.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Zhao, P., Liu, D. Electronic transport properties of capped-carbon-nanotube-based molecular junctions with multiple N and B dopants. Chin. Sci. Bull. 57, 2073–2077 (2012). https://doi.org/10.1007/s11434-012-5148-5

Download citation

  • Received: 07 January 2012

  • Accepted: 09 March 2012

  • Published: 11 April 2012

  • Issue Date: June 2012

  • DOI: https://doi.org/10.1007/s11434-012-5148-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • carbon nanotube
  • rectifying
  • negative differential resistance
  • non-equilibrium Green function
  • density functional theory
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

152.53.39.118

Not affiliated

Springer Nature

© 2025 Springer Nature