Chinese Science Bulletin

, Volume 57, Issue 23, pp 2948–2955 | Cite as

Porous graphene: Properties, preparation, and potential applications

  • PengTao Xu
  • JiXiang Yang
  • KeSai Wang
  • Zhen Zhou
  • PanWen Shen
Open Access
Review Special Issue: Graphene

Abstract

Graphene has recently emerged as an important and exciting material. Inspired by its outstanding properties, many researchers have extensively studied graphene-related materials both experimentally and theoretically. Porous graphene is a collection of graphene-related materials with nanopores in the plane. Porous graphene exhibits properties distinct from those of graphene, and it has widespread potential applications in various fields such as gas separation, hydrogen storage, DNA sequencing, and supercapacitors. In this review, we summarize recent progress in studies of the properties, preparation, and potential applications of porous graphene, and show that porous graphene is a promising material with great potential for future development.

Keywords

graphene porous graphene electronic structure gas separation DNA sequencing 

References

  1. 1.
    Affoune A. Experimental evidence of a single nano-graphene. Chem Phys Lett, 2001, 348: 17–20CrossRefGoogle Scholar
  2. 2.
    Lu X, Yu M, Huang H, et al. Tailoring graphite with the goal of achieving single sheets. Nanotechnology, 1999, 10: 269–272CrossRefGoogle Scholar
  3. 3.
    Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669CrossRefGoogle Scholar
  4. 4.
    Berger C, Song Z, Li T, et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B, 2004, 108: 19912–19916CrossRefGoogle Scholar
  5. 5.
    Ishigami M, Chen J H, Cullen W G, et al. Atomic structure of graphene on SiO2. Nano Lett, 2007, 7: 1643–1648CrossRefGoogle Scholar
  6. 6.
    Pletikosić I, Kralj M, Pervan P, et al. Dirac cones and minigaps for graphene on Ir(111). Phys Rev Lett, 2009, 102: 056808CrossRefGoogle Scholar
  7. 7.
    Lahiri J, Miller T, Adamska L, et al. Graphene growth on Ni(111) by transformation of a surface carbide. Nano Lett, 2011, 111: 518–522CrossRefGoogle Scholar
  8. 8.
    Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett, 2009, 9: 30–35CrossRefGoogle Scholar
  9. 9.
    Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol, 2008, 3: 270–274CrossRefGoogle Scholar
  10. 10.
    Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321: 385–388CrossRefGoogle Scholar
  11. 11.
    Zhang Y, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 2005, 438: 201–204CrossRefGoogle Scholar
  12. 12.
    Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438: 197–200CrossRefGoogle Scholar
  13. 13.
    Morozov S, Novoselov K, Katsnelson M, et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett, 2008, 100: 016602CrossRefGoogle Scholar
  14. 14.
    Ryu S, Han M Y, Maultzsch J, et al. Reversible basal plane hydrogenation of graphene. Nano Lett, 2008, 8: 4597–4602CrossRefGoogle Scholar
  15. 15.
    Xu B, Lu Y H, Feng Y P, et al. Density functional theory study of BN-doped graphene superlattice: Role of geometrical shape and size. J Appl Phys, 2010, 108: 073711CrossRefGoogle Scholar
  16. 16.
    Du A, Zhu Z, Smith S C. Multifunctional porous graphene for nanoelectronics and hydrogen storage: New properties revealed by first principle calculations. J Am Chem Soc, 2010, 132: 2876–2877CrossRefGoogle Scholar
  17. 17.
    Blankenburg S, Bieri M, Fasel R, et al. Porous graphene as an atmospheric nanofilter. Small, 2010, 6: 2266–2271CrossRefGoogle Scholar
  18. 18.
    Jiang D, Cooper V R, Dai S. Porous graphene as the ultimate membrane for gas separation. Nano Lett, 2009, 9: 4019–4024CrossRefGoogle Scholar
  19. 19.
    Premkumar T, Geckeler K E. Graphene-DNA hybrid materials: Assembly, applications, and prospects. Prog Polym Sci, 2012, doi: 10.1016/j.progpolymsci.2011.08.003Google Scholar
  20. 20.
    Postma H W C. Rapid sequencing of individual DNA molecules in graphene nanogaps. Nano Lett, 2010, 10: 420–425CrossRefGoogle Scholar
  21. 21.
    Bieri M, Treier M, Cai J, et al. Porous graphenes: Two-dimensional polymer synthesis with atomic precision. Chem Commun, 2009, 45: 6919–6921CrossRefGoogle Scholar
  22. 22.
    Li Y, Zhou Z, Shen P, et al. Two-dimensional polyphenylene: Experimentally available porous graphene as a hydrogen purification membrane. Chem Commun, 2010, 46: 3672–3674CrossRefGoogle Scholar
  23. 23.
    Treier M, Pignedoli C A, Laino T, et al. Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes. Nat Chem, 2011, 3: 61–67CrossRefGoogle Scholar
  24. 24.
    Schmitz C H, Ikonomov J, Sokolowski M. Two-dimensional polyamide networks with a broad pore size distribution on the Ag(111) surface. J Phys Chem C, 2011, 115: 7270–7278CrossRefGoogle Scholar
  25. 25.
    Ourdjini O, Pawlak R, Abel M, et al. Substrate-mediated ordering and defect analysis of a surface covalent organic framework. Phys Rev B, 2011, 84: 125421CrossRefGoogle Scholar
  26. 26.
    Fischbein M D, Drndić M. Electron beam nanosculpting of suspended graphene sheets. Appl Phys Lett, 2008, 93: 113107CrossRefGoogle Scholar
  27. 27.
    Schneider G F, Kowalczyk S W, Calado V E, et al. DNA translocation through graphene nanopores. Nano Lett, 2010, 10: 3163–3167CrossRefGoogle Scholar
  28. 28.
    Hatanaka M. Band structures of porous graphenes. Chem Phys Lett, 2010, 488: 187–192CrossRefGoogle Scholar
  29. 29.
    Li Y, Zhou Z, Shen P W, et al. Structural and electronic properties of graphane nanoribbons. J Phys Chem C, 2009, 113, 15043–15046CrossRefGoogle Scholar
  30. 30.
    Zhou J, Wang Q, Sun Q, et al. Ferromagnetism in semihydrogenated graphene sheet. Nano Lett, 2009, 9: 3867–3870CrossRefGoogle Scholar
  31. 31.
    Nourbakhsh A, Cantoro M, Vosch T, et al. Bandgap opening in oxygen plasma-treated graphene. Nanotechnology, 2010, 21: 435203CrossRefGoogle Scholar
  32. 32.
    Zhou S Y, Gweon G H, Fedorov A V, et al. Substrate-induced bandgap opening in epitaxial graphene. Nat Mater, 2007, 6: 770–775CrossRefGoogle Scholar
  33. 33.
    Chang H, Cheng J, Liu X, et al. Facile synthesis of wide-bandgap fluorinated graphene semiconductors. Chem-Eur J, 2011, 17: 8896–8903CrossRefGoogle Scholar
  34. 34.
    Bieri M, Nguyen M T, Gröning O, et al. Two-dimensional polymer formation on surfaces: Insight into the roles of precursor mobility and reactivity. J Am Chem Soc, 2010, 132: 16669–16676CrossRefGoogle Scholar
  35. 35.
    Bell D C, Lemme M C, Stern L A, et al. Precision cutting and patterning of graphene with helium ions. Nanotechnology, 2009, 20: 455301CrossRefGoogle Scholar
  36. 36.
    Weng L, Zhang L, Chen Y P, et al. Atomic force microscope local oxidation nanolithography of graphene. Appl Phys Lett, 2008, 93: 093107CrossRefGoogle Scholar
  37. 37.
    Datta S S, Strachan D R, Khamis S M, et al. Crystallographic etching of few-layer graphene. Nano Lett, 2008, 8: 1912–1915CrossRefGoogle Scholar
  38. 38.
    Ci L, Xu Z, Wang L, et al. Controlled nanocutting of graphene. Nano Res, 2008, 1: 116–122CrossRefGoogle Scholar
  39. 39.
    Freemantle M. Membranes for gas separation. Chem Eng News, 2005, 83: 49–57Google Scholar
  40. 40.
    Dong J, Lin Y S, Kanezashi M, et al. Microporous inorganic membranes for high temperature hydrogen purification. J Appl Phys, 2008, 104: 121301CrossRefGoogle Scholar
  41. 41.
    Adhikari S, Fernando S. Hydrogen membrane separation techniques. Ind Eng Chem Res, 2006, 45: 875–881CrossRefGoogle Scholar
  42. 42.
    Phair J W, Donelson R. Developments and design of novel (non-palladium-based) metal membranes for hydrogen separation. Ind Eng Chem Res, 2006, 45: 5657–5674CrossRefGoogle Scholar
  43. 43.
    Oyama S, Lee D, Hacarlioglu P, et al. Theory of hydrogen permeability in nonporous silica membranes. J Membrane Sci, 2004, 244: 45–53CrossRefGoogle Scholar
  44. 44.
    Leenaerts O, Partoens B, Peeters F M. Graphene: A perfect nanoballoon. Appl Phys Lett, 2008, 93: 193107CrossRefGoogle Scholar
  45. 45.
    Bunch J S, Verbridge S S, Alden J S, et al. Impermeable atomic membranes from graphene sheets. Nano Lett, 2008, 8: 2458–2462CrossRefGoogle Scholar
  46. 46.
    de Vos R M, Verweij H. High-selectivity, high-flux silica membranes for gas separation. Science, 1998, 279: 1710–1711CrossRefGoogle Scholar
  47. 47.
    Schrier J. Fluorinated and nanoporous graphene materials as sorbents for gas separations. ACS Appl Mater Interfaces, 2011, 3: 4451–4458CrossRefGoogle Scholar
  48. 48.
    Schrier J, McClain J. Thermally-driven isotope separation across nanoporous graphene. Chem Phys Lett, 2012, 521: 118–124CrossRefGoogle Scholar
  49. 49.
    Hauser A W, Schwerdtfeger P. Nanoporous graphene membranes for efficient 3He/4He separation. J Phys Chem Lett, 2012, 3: 209–213CrossRefGoogle Scholar
  50. 50.
    Dekker C. Solid-state nanopores. Nat Nanotechnol, 2007, 2: 209–215CrossRefGoogle Scholar
  51. 51.
    Healy K, Schiedt B, Morrison A P. Solid-state nanopore technologies for nanopore-based DNA analysis. Nanomedicine, 2007, 2: 875–897CrossRefGoogle Scholar
  52. 52.
    Kasianowicz J J. Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA, 1996, 93: 13770–13773CrossRefGoogle Scholar
  53. 53.
    Sanger F. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA, 1977, 74: 5463–5467CrossRefGoogle Scholar
  54. 54.
    Venter J C, Adams M D, Myers E W, et al. The sequence of the human genome. Science, 2001, 291: 1304–1351CrossRefGoogle Scholar
  55. 55.
    Clarke J, Wu H C, Jayasinghe L, et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol, 2009, 4: 265–270CrossRefGoogle Scholar
  56. 56.
    Storm A J, Chen J H, Ling X S, et al. Fabrication of solid-state nanopores with single-nanometre precision. Nat Mater, 2003, 2: 537–540CrossRefGoogle Scholar
  57. 57.
    Venkatesan B M, Shah A B, Zuo J M, et al. DNA sensing using nanocrystalline surface-enhanced Al2O3 nanopore sensors. Adv Funct Mater, 2010, 20: 1266–1275CrossRefGoogle Scholar
  58. 58.
    Li J, Stein D, McMullan C, et al. Ion-beam sculpting at nanometre length scales. Nature, 2001, 412: 166–169CrossRefGoogle Scholar
  59. 59.
    Merchant C A, Healy K, Wanunu M, et al. DNA translocation through graphene nanopores. Nano Lett, 2010, 10: 2915–2921CrossRefGoogle Scholar
  60. 60.
    Smeets R, Keyser U, Wu M, et al. Nanobubbles in solid-state nanopores. Phys Rev Lett, 2006, 97: 088101CrossRefGoogle Scholar
  61. 61.
    Zhang Y, Dai H. Formation of metal nanowires on suspended single-walled carbon nanotubes. Appl Phys Lett, 2000, 77: 3015–3017CrossRefGoogle Scholar
  62. 62.
    He Y, Scheicher R H, Grigoriev A, et al. Enhanced DNA sequencing performance through edge-hydrogenation of graphene electrodes. Adv Funct Mater, 2011, 21: 2674–2679CrossRefGoogle Scholar
  63. 63.
    Branton D, Deamer D W, Marziali A, et al. The potential and challenges of nanopore sequencing. Nat Biotechnol, 2008, 26: 1146–1153CrossRefGoogle Scholar
  64. 64.
    Arellano J S J, Molina L M, Rubio A, et al. Density functional study of adsorption of molecular hydrogen on graphene layers. J Chem Phys, 2000, 112: 8114–8119CrossRefGoogle Scholar
  65. 65.
    Zhou Z, Zhao J, Chen Z, et al. Comparative study of hydrogen adsorption on carbon and BN nanotubes. J Phys Chem B, 2006, 110: 13363–13369CrossRefGoogle Scholar
  66. 66.
    Yildirim T, Ciraci S. Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. Phys Rev Lett, 2005, 94: 175501CrossRefGoogle Scholar
  67. 67.
    Zhao Y F, Kim Y H, Dillon A C, et al. Hydrogen storage in novel organometallic buckyballs. Phys Rev Lett, 2005, 94: 155504CrossRefGoogle Scholar
  68. 68.
    Zhang C, Zhang R, Wang Z X, et al. Ti-substituted boranes as hydrogen storage materials: A computational quest for the ideal combination of stable electronic structure and optimal hydrogen uptake. Chem-Eur J, 2009, 15: 5910–5919CrossRefGoogle Scholar
  69. 69.
    Zhou Z, Gao X, Yan J, et al. Doping effects of B and N on hydrogen adsorption in single-walled carbon nanotubes through density functional calculations. Carbon, 2006, 44: 939–947CrossRefGoogle Scholar
  70. 70.
    Li M, Li Y, Zhou Z, et al. Ca-coated boron fullerenes and nanotubes as superior hydrogen storage materials. Nano Lett, 2009, 9: 1944–1948CrossRefGoogle Scholar
  71. 71.
    Sun Q, Wang Q, Jena P, et al. Clustering of Ti on a C60 surface and its effect on hydrogen storage. J Am Chem Soc, 2005, 127: 14582–14583CrossRefGoogle Scholar
  72. 72.
    Reunchan P, Jhi S H. Metal-dispersed porous graphene for hydrogen storage. Appl Phys Lett, 2011, 98: 093103CrossRefGoogle Scholar
  73. 73.
    Sigal A, Rojas M, Leiva E. Is hydrogen storage possible in metaloped graphite 2D systems in conditions found on earth? Phys Rev Lett, 2011, 107: 1–4CrossRefGoogle Scholar
  74. 74.
    Vixguterl C, Frackowiak E, Jurewicz K, et al. Electrochemical energy storage in ordered porous carbon materials. Carbon, 2005, 43: 1293–1302CrossRefGoogle Scholar
  75. 75.
    Fuertes A B, Pico F, Rojo J M. Influence of pore structure on electric double-layer capacitance of template mesoporous carbons. J Power Sources, 2004, 133: 329–336CrossRefGoogle Scholar
  76. 76.
    Yoon B. Electrical properties of electrical double layer capacitors with integrated carbon nanotube electrodes. Chem Phys Lett, 2004, 388: 170–174CrossRefGoogle Scholar
  77. 77.
    Pushparaj V L, Shaijumon M M, Kumar A, et al. Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci USA, 2007, 104: 13574–13577CrossRefGoogle Scholar
  78. 78.
    Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6: 183–191CrossRefGoogle Scholar
  79. 79.
    Stankovich S, Dikin D A, Piner R D, et al. Synthesis of grapheneased nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45: 1558–1565CrossRefGoogle Scholar
  80. 80.
    Wang Y, Shi Z, Huang Y, et al. Supercapacitor devices based on graphene materials. J Phys Chem C, 2009, 113: 13103–13107CrossRefGoogle Scholar
  81. 81.
    Liu C, Yu Z, Neff D, et al. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett, 2010, 10: 4863–4868CrossRefGoogle Scholar
  82. 82.
    Zhang L L, Zhou R, Zhao X S. Graphene-based materials as supercapacitor electrodes. J Mater Chem, 2010, 20: 5983–5992CrossRefGoogle Scholar
  83. 83.
    Yu A, Roes I, Davies A, et al. Ultrathin, transparent, and flexible graphene films for supercapacitor application. Appl Phys Lett, 2010, 96: 253105CrossRefGoogle Scholar
  84. 84.
    Jeong H M, Lee J W, Shin W H, et al. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogenoped sites at basal planes. Nano Lett, 2011, 11: 2472–2477CrossRefGoogle Scholar
  85. 85.
    Li Y, Zhou Z, Shen P, et al. Spin gapless semiconductor-metal-halfetal properties in nitrogen-doped zigzag graphene nanoribbons. ACS Nano, 2009, 3: 1952–1958CrossRefGoogle Scholar
  86. 86.
    Imran Jafri R, Rajalakshmi N, Ramaprabhu S. Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J Mater Chem, 2010, 20: 7114–7117CrossRefGoogle Scholar
  87. 87.
    Yoo E, Kim J, Hosono E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett, 2008, 8: 2277–2282CrossRefGoogle Scholar
  88. 88.
    Su L W, Jing Y, Zhou Z. Li ion battery Materials with core-shell nanostructures. Nanoscale, 2011, 3: 3967–3983CrossRefGoogle Scholar
  89. 89.
    Lu Y H, Zhou M, Zhang C, et al. Metal-embedded graphene: A possible catalyst with high activity. J Phys Chem C, 2009, 113: 20156–20160CrossRefGoogle Scholar
  90. 90.
    Li Y, Zhou Z, Yu G, et al. CO catalytic oxidation on iron-embedded graphene: Computational quest for low-cost nanocatalysts. J Phys Chem C, 2010, 114: 6250–6254CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • PengTao Xu
    • 1
  • JiXiang Yang
    • 1
  • KeSai Wang
    • 1
  • Zhen Zhou
    • 1
  • PanWen Shen
    • 1
  1. 1.Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Institute of New Energy Material Chemistry, Computational Center for Molecular Science, College of ChemistryNankai UniversityTianjinChina

Personalised recommendations