Skip to main content
Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Chinese Science Bulletin
  3. Article

Amplifying stationary quantum discord and entanglement between a superconducting qubit and a data bus by time-dependent electromagnetic field

  • Article
  • Quantum Information
  • Open access
  • Published: 21 April 2012
  • Volume 57, pages 1637–1642, (2012)
  • Cite this article
Download PDF

You have full access to this open access article

Chinese Science Bulletin
Amplifying stationary quantum discord and entanglement between a superconducting qubit and a data bus by time-dependent electromagnetic field
Download PDF
  • Yi Qian1,
  • YeQi Zhang1 &
  • JingBo Xu1 
  • 724 Accesses

  • 15 Citations

  • Explore all metrics

Abstract

We study the dynamics of quantum discord and entanglement between a superconducting qubit and a data bus, which is driven by a controllable time-dependent electromagnetic field, in the presence of phase decoherence and find that the quantum discord and entanglement remain at a stationary non-zero value for long time evolution. It is shown that the amount of stationary quantum discord and entanglement can be enhanced by applying the time-dependent electromagnetic field.

Article PDF

Download to read the full article text

Similar content being viewed by others

Quantum correlations in quantum emitters strongly coupled with metallic nanoparticles

Article 02 March 2019

Time-invariant entanglement and sudden death of nonlocality for multipartite systems under collective dephasing

Article 10 January 2017

Information quantifiers, entropy squeezing and entanglement properties of superconducting qubit-deformed bosonic field system under dephasing effect

Article 20 August 2017

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Cavity QED
  • Quantum Communications and Cryptography
  • Quantum Information
  • Quantum Optics
  • Quantum Correlation and Entanglement
  • Quantum Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Nielsen M A, Chuand I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000

    Google Scholar 

  2. Hagley E, Maitre E, Nogues G, et al. Generation of Einstein-Podolsky-Rosen pairs of atoms. Phys Rev Lett, 1997, 79: 1–5

    Article  Google Scholar 

  3. Rauschenbeutel A, Nogues G, Osnaghi S, et al. Step-by-step engineered multiparticle entanglement. Science, 2000, 288: 2024–2028

    Article  Google Scholar 

  4. Brennecke F, Donner T, Ritter S, et al. Cavity QED with a Bose-Einstein condensate. Nature, 2007, 450: 268–271

    Article  Google Scholar 

  5. McKeever J, Buck J R, Boozer A D, et al. State-insensitive cooling and trapping of single atoms in an optical cavity. Phys Rev Lett, 2003, 90: 133602

    Article  Google Scholar 

  6. Deng Z J, Feng M, Gao K L. Preparation of entangled states of four remote atomic qubits in decoherence-free subspace. Phys Rev A, 2007, 75: 024302

    Article  Google Scholar 

  7. Braunstein S L, Caves C M, Jozsa R, et al. Separability of very noisy mixed states and implications for NMR quantum computing. Phys Rev Lett, 1999, 83: 1054–1057

    Article  Google Scholar 

  8. Meyer D A. Sophisticated quantum search without entanglement. Phys Rev Lett, 2000, 85: 2014–2017

    Article  Google Scholar 

  9. Bennett C H, DiVincenzo D P, Fuchs C A, et al. Quantum nonlocality without entanglement. Phys Rev A, 1999, 59: 1070–1091

    Article  Google Scholar 

  10. Datta A, Shaji A, Caves C M. Quantum discord and the power of one qubit. Phys Rev Lett, 2008, 100: 050502

    Article  Google Scholar 

  11. Lanyon B P, Barbieri M, Almeida M P, et al. Experimental quantum computing without entanglement. Phys Rev Lett, 2008, 101: 200501

    Article  Google Scholar 

  12. Ollivier H, Zurek W H. Quantum discord: A measure of the quantumness of correlations. Phys Rev Lett, 2001, 88: 017901

    Article  Google Scholar 

  13. Horodecki M, Horodecki P, Horodecki R, et al. Local versus nonlocal information in quantum-information theory: Formalism and phenomena. Phys Rev A, 2005, 71: 062307

    Article  Google Scholar 

  14. Vedral V. The elusive source of quantum speedup. Found Phys, 2010, 40: 1141–1154

    Article  Google Scholar 

  15. Werlang T, Souza S, Fanchini F F, et al. Robustness of quantum discord to sudden death. Phys Rev A, 2009, 80: 024103

    Article  Google Scholar 

  16. Salemian S, Mohammadnejad S. An error-free protocol for quantum entanglement distribution in long-distance quantum communication. Chin Sci Bull, 2011, 56: 618–625

    Article  Google Scholar 

  17. Chen C Y, Sun Q. Realization of superposition and entanglement of coherent and squeezed states in circuit quantum electrodynamics. Sci China Phys Mech Astron, 2011, 54: 930–935

    Article  Google Scholar 

  18. Cao H X, Li L, Chen Z L. Restricted allowable generalized quantum gates. Chin Sci Bull, 2010, 55: 2122–2125

    Article  Google Scholar 

  19. Dong H, Liu X F, Sun C P. Thermodynamic witness of quantum probing. Chin Sci Bull, 2010, 55: 3256–3260

    Article  Google Scholar 

  20. Wang B, Xu Z Y, Chen Z Q, et al. Non-Markovian effect on the quantum discord. Phys Rev A, 2010, 81: 014101

    Article  Google Scholar 

  21. Hao X, Ma C L, Sha J Q. Decoherence of quantum discord in an asymmetric-anisotropy spin system. J Phys A: Math Theor, 2010, 43: 425302

    Article  Google Scholar 

  22. Mazzola L, Piilo J, Maniscalco S. Sudden transition between classical and quantum decoherence. Phys Rev Lett, 2010, 104: 200401

    Article  Google Scholar 

  23. Xu J S, Xu X Y, Li C F, et al. Experimental investigation of classical and quantum correlations under decoherence. Nat Commun, 2010, 1: 7

    Google Scholar 

  24. Makhlin Y, Schön G, Snirman A. Quantum-state engineering with Josephson-junction devices. Rev Mod Phys, 2001, 73: 357–400

    Article  Google Scholar 

  25. Clarke J, Wilhelm F K. Superconducting quantum bits. Nature, 2008, 453: 1031–1042

    Article  Google Scholar 

  26. Majer J, Chow J M, Gambetta J M, et al. Coupling superconducting qubits via a cavity bus. Nature, 2007, 449: 443–447

    Article  Google Scholar 

  27. You J Q, Tsai J S, Nori F. Scalable quantum computing with Josephson charge qubits. Phys Rev Lett, 2002, 89: 197902

    Article  Google Scholar 

  28. Zagoskin A M, Grajcar M, Omelyanchouk A N. Selective amplification of a quantum state. Phys Rev A, 2004, 70: 060301

    Article  Google Scholar 

  29. Blais A, van den Brink A M, Zagoskin A M. Tunable coupling of auperconducting qubits. Phys Rev Lett, 2003, 90: 127901

    Article  Google Scholar 

  30. Liu Y X, Sun C P, Nori F. Scalable superconducting qubit circuits using dressed states. Phys Rev A, 2006, 74: 052321

    Article  Google Scholar 

  31. Liu Y X, You J Q, Wei L F, et al. Optical selection rules and phasedependent adiabatic state control in a superconducting quantum circuit. Phys Rev Lett, 2005, 95: 087001

    Article  Google Scholar 

  32. Xu J B, Li S B. Entanglement and Bell violation with phase decoherence or dissipation. Eur Phys J D, 2005, 35: 553–560

    Article  Google Scholar 

  33. Xu J B, Zhang Y Q. Entanglement control in a superconducting qubit system by an electromagnetic field. Eur Phys J D, 2011, 63: 483–488

    Article  Google Scholar 

  34. Ali M, Rau A R P, Alber G. Quantum discord for two-qubit X states. Phys Rev A, 2010, 81: 042105

    Article  Google Scholar 

  35. Wootters W K. Entanglement of formation of an arbitrary state of two qubits. Phys Rev Lett, 1998, 80: 2245–2248

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Zhejiang Institute of Modern Physics and Physics Department, Zhejiang University, Hangzhou, 310027, China

    Yi Qian, YeQi Zhang & JingBo Xu

Authors
  1. Yi Qian
    View author publications

    Search author on:PubMed Google Scholar

  2. YeQi Zhang
    View author publications

    Search author on:PubMed Google Scholar

  3. JingBo Xu
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to JingBo Xu.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Qian, Y., Zhang, Y. & Xu, J. Amplifying stationary quantum discord and entanglement between a superconducting qubit and a data bus by time-dependent electromagnetic field. Chin. Sci. Bull. 57, 1637–1642 (2012). https://doi.org/10.1007/s11434-012-5112-4

Download citation

  • Received: 03 November 2011

  • Accepted: 12 January 2012

  • Published: 21 April 2012

  • Issue Date: May 2012

  • DOI: https://doi.org/10.1007/s11434-012-5112-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • stationary quantum discord
  • stationary entanglement
  • time-dependent electromagnetic field
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

152.53.39.118

Not affiliated

Springer Nature

© 2025 Springer Nature