Advertisement

Chinese Science Bulletin

, Volume 57, Issue 16, pp 1925–1930 | Cite as

Squeezing bandwidth controllable twin beam light and phase sensitive nonlinear interferometer based on atomic ensembles

  • JieTai Jing
  • CunJin Liu
  • ZhiFan Zhou
  • Florian Hudelist
  • ChunHua Yuan
  • LiQing Chen
  • XiaoYun Li
  • Jing Qian
  • KeYe Zhang
  • Lu Zhou
  • HongMei Ma
  • GuangJiong Dong
  • ZeYu Ou
  • WeiPing ZhangEmail author
Open Access
Review Special Topic Quantum Information

Abstract

We review our recent experimental progress in quantum technology employing amplification effect of four-wave mixing in a rubidium vapor. We have produced an intensity difference squeezed light source at frequencies as low as 1.5 kHz which is so far the lowest frequency at which squeezing has been observed in an atomic system. Moreover, we find that the bandwidth of our squeezed light source can be controlled with light intensity pumping. Using our non-classical light source, we have further developed a nonlinear Mach-Zehnder (MZ) interferometer, for which the maximum fringe intensity depends quadratically on the intensity of the phase-sensing field at the high-gain regime, leading to much better sensitivity than a linear MZ interferometer in which the beam splitters have the same phase-sensing intensity. The quantum technologies developed by our group could have great potential in areas such as precision measurement and quantum information.

Keywords

atomic ensemble four wave mixing quantum light source nonlinear interferometer 

References

  1. 1.
    Kok P, Munro W J, Nemoto K, et al. Linear optical quantum computing with photonic qubits. Rev Mod Phys, 2007, 79: 135–174CrossRefGoogle Scholar
  2. 2.
    Sangouard N, Simon C, de Riedmatten H, et al. Quantum repeaters based on atomic ensembles and linear optics. Rev Mod Phys, 2011, 83: 33–80CrossRefGoogle Scholar
  3. 3.
    Slusher R E, Hollberg L W, Yurke B, et al. Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys Rev Lett, 1985, 55: 2409–2412CrossRefGoogle Scholar
  4. 4.
    Wu L, Kimble H J, Hall J L, et al. Generation of squeezed states by parametric down conversion. Phys Rev Lett, 1986, 57: 2520–2523CrossRefGoogle Scholar
  5. 5.
    Li X Y, Pan Q, Jing J T, et al. Quantumdense coding exploiting a bright Einstein-Podolsky-Rosen beam. Phys Rev Lett, 2002, 88: 047904CrossRefGoogle Scholar
  6. 6.
    Jing J T, Zhang J, Yan J, et al. Experimental demonstration of tripartite entanglementand controlled dense coding for continuous variables. Phys Rev Lett, 2003, 90: 167903CrossRefGoogle Scholar
  7. 7.
    Jia X J, Su X, Pan Q, et al. Experimental demonstration of unconditional entanglement swapping for continuous variables. Phys Rev Lett, 2004, 93: 250503CrossRefGoogle Scholar
  8. 8.
    Vahlbruch H, Mehmet M, Chelkowski S, et al. Observation of squeezed light with 10 dB quantum-noise reduction. Phys Rev Lett, 2008, 100: 033602CrossRefGoogle Scholar
  9. 9.
    Mehmet M, Vahlbruch H, Lastzka N, et al. Observation of squeezed states with strong photon-number oscillations. Phys Rev A, 2010, 81: 013814CrossRefGoogle Scholar
  10. 10.
    McCormick C F, Boyer V, Arimondo E, et al. Strong relative intensity squeezing by four-wave mixing in rubidium vapor. Opt Lett, 2007, 32: 178–180CrossRefGoogle Scholar
  11. 11.
    Glorieux Q, Guidoni L, Guibal S, et al. Strong quantum correlations in four wave mixing in 85Rb vapor. Proc SPIE, 2010, 7727: 772703CrossRefGoogle Scholar
  12. 12.
    Boyer V, Marino A M, Pooser R C, et al. Entangled images from four-wave mixing. Science, 2008, 321: 544–547CrossRefGoogle Scholar
  13. 13.
    Caves C M. Quantum-mechanical noise in an interferometer. Phys Rev D, 1981, 23: 1693–1708CrossRefGoogle Scholar
  14. 14.
    McKenzie K, Grosse N, Bowen W P, et al. Squeezing in the audio gravitational-wave detection band. Phys Rev Lett, 2004, 93: 161105CrossRefGoogle Scholar
  15. 15.
    Chelkowski S, Vahlbruch H, Danzmann K, et al. Coherent control of broadband vacuum squeezing. Phys Rev A, 2007, 75: 043814CrossRefGoogle Scholar
  16. 16.
    Mikhailov E E, Novikova I. Low-frequency vacuum squeezing via polarization self-rotation in Rb vapor. Opt Lett, 2008, 33: 1213–1215CrossRefGoogle Scholar
  17. 17.
    Liu C J, Jing J T, Zhou Z F, et al. Realization of low frequency and controllable bandwidth squeezing based on a four-wave-mixing amplifier in rubidium vapor. Opt Lett, 2011, 36: 2979–2981CrossRefGoogle Scholar
  18. 18.
    McCormick C F, Morino A M, Boyer V, et al. Strong low-frequency quantum correlations from a four-wave-mixing amplifier. Phys Rev A, 2008, 78: 043816CrossRefGoogle Scholar
  19. 19.
    Jing J T, Liu C J, Zhou Z F, et al. Realization of a nonlinear interferometer with parametric amplifiers. Appl Phys Lett, 2011, 99: 011110CrossRefGoogle Scholar
  20. 20.
    Yurke B, McCall S L, Klauder J R. SU(2) and SU(1,1) interferometers. Phys Rev A, 1986, 33: 4033–4054CrossRefGoogle Scholar
  21. 21.
    Ou Z Y. Complementarity and fundamental limit in precision phase measurement. Phys Rev Lett, 1996, 77: 2352–2355CrossRefGoogle Scholar
  22. 22.
    Plick W N, Dowling J P, Agarwal G S. Coherent-light-boosted, sub-shot noise, quantum interferometry. New J Phys, 2010, 12: 083014CrossRefGoogle Scholar
  23. 23.
    Boyd R. Nonlinear Optics. New York: Academic Press, 1992Google Scholar

Copyright information

© The Author(s) 2012

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • JieTai Jing
    • 1
    • 2
  • CunJin Liu
    • 1
    • 2
  • ZhiFan Zhou
    • 1
    • 2
  • Florian Hudelist
    • 1
    • 2
  • ChunHua Yuan
    • 1
  • LiQing Chen
    • 1
    • 2
  • XiaoYun Li
    • 1
  • Jing Qian
    • 1
  • KeYe Zhang
    • 1
  • Lu Zhou
    • 1
  • HongMei Ma
    • 1
  • GuangJiong Dong
    • 1
    • 2
  • ZeYu Ou
    • 1
    • 2
    • 3
  • WeiPing Zhang
    • 1
    • 2
    Email author
  1. 1.Quantum Institute for Light and Atoms, Department of PhysicsEast China Normal UniversityShanghaiChina
  2. 2.State Key Laboratory of Precision SpectroscopyEast China Normal UniversityShanghaiChina
  3. 3.Department of PhysicsIndiana University-Purdue University IndianapolisIndianapolisUSA

Personalised recommendations