Advertisement

Chinese Science Bulletin

, Volume 57, Issue 16, pp 1910–1918 | Cite as

Quantum information and many body physics with cold atoms

  • XiaoFei Zhang
  • YaoHua Chen
  • GuoCai Liu
  • Wei Wu
  • Lin Wen
  • WuMing LiuEmail author
Open Access
Review Special Topic Quantum Information

Abstract

We review our recent theoretical advances in quantum information and many body physics with cold atoms in various external potential, such as harmonic potential, kagome optical lattice, triangular optical lattice, and honeycomb lattice. The many body physics of cold atom in harmonic potential is investigated in the frame of mean-field Gross-Pitaevskii equation. Then the quantum phase transition and strongly correlated effect of cold atoms in triangular optical lattice, and the interacting Dirac fermions on honeycomb lattice, are investigated by using cluster dynamical mean-field theory and continuous time quantum Monte Carlo method. We also study the quantum spin Hall effect in the kagome optical lattice.

Keywords

ultracold atom Bose-Einstein condensate soliton optical lattice quantum phase transition 

References

  1. 1.
    Strecker K E, Partridge G B, Truscoff A G, et al. Formation and propagation of matter-wave soliton trains. Nature, 2002, 417: 150–153CrossRefGoogle Scholar
  2. 2.
    Khaykovich L, Schreck F, Ferrari G, et al. Formation of a matter-wave bright soliton. Science, 2002, 296: 1290–1293CrossRefGoogle Scholar
  3. 3.
    Becker C, Stellmer S, Soltan-Panahi P, et al. Oscillations and interactions of dark and dark-bright solitons in Bose-Einstein condensates. Nature Phys, 2008, 4: 496–501CrossRefGoogle Scholar
  4. 4.
    Eiermann B, Anker Th, Albiez M, et al. Bright Bose-Einstein gap solitons of atoms with repulsive interaction. Phys Rev Lett, 2004, 92: 230401CrossRefGoogle Scholar
  5. 5.
    Wang D L, Yan X H, Liu W M. Localized gap-soliton trains of Bose-Einstein condensates in an optical lattice. Phys Rev E, 2008, 78: 026606CrossRefGoogle Scholar
  6. 6.
    Jaksch D, Bruder C, Cirac J I, et al. Cold bosonic atoms in optical lattices. Phys Rev Lett, 1998, 81: 3108–3111CrossRefGoogle Scholar
  7. 7.
    Petsas K I, Coates A B, Grynberg G. Crystallography of optical lattices. Phys Rev A, 1994, 50: 5173–5189CrossRefGoogle Scholar
  8. 8.
    Bloch I, Dalibard J, Zwerger W. Many-body physics with ultracold gases. Rev Mod Phys, 2008, 80: 885–964CrossRefGoogle Scholar
  9. 9.
    Hofstetter W, Cirac J I, Zoller P, et al. High-temperature superfluidity of fermionic atoms in optical lattices. Phys Rev Lett, 2002, 89: 220407CrossRefGoogle Scholar
  10. 10.
    Inada Y, Horikoshi M, Nakajima S, et al. Critical temperature and condensate fraction of a fermion pair condensate. Phys Rev Lett, 2008, 101: 180406CrossRefGoogle Scholar
  11. 11.
    Kottke M, Schulte T, Cacciapuoti L, et al. Collective excitation of Bose-Einstein condensates in the transition region between three and one dimensions. Phys Rev A, 2005, 72: 053631CrossRefGoogle Scholar
  12. 12.
    Joksch D, Zoller P. The cold atom Hubbard toolbox. Ann Phys, 2005, 315: 52–79CrossRefGoogle Scholar
  13. 13.
    Duan L M, Demler E, Lukin M D. Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys Rev Lett, 2003, 91: 090402CrossRefGoogle Scholar
  14. 14.
    Santos L, Baranov M A, Cirac J I, et al. Atomic quantum gases in Kagomé lattices. Phys Rev Lett, 2004, 93: 030601CrossRefGoogle Scholar
  15. 15.
    Damski B, Fehrmann H, Everts H U, et al. Quantum gases in trimerized Kagomé lattices. Phys Rev A, 2005, 72: 053612CrossRefGoogle Scholar
  16. 16.
    Damski B, Everts H U, Honecker A, et al. Atomic fermi gas in the trimerized Kagomé lattice at 2/3 filling. Phys Rev Lett, 2005, 95: 060403CrossRefGoogle Scholar
  17. 17.
    Ruostekoski J. Optical Kagomé lattice for ultracold atoms with nearest neighbor interactions. Phys Rev Lett, 2009, 103: 080406CrossRefGoogle Scholar
  18. 18.
    Liang Z X, Zhang Z D, Liu WM. Dynamics of a bright soliton in Bose-Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential. Phys Rev Lett, 2005, 94: 050402CrossRefGoogle Scholar
  19. 19.
    Li B, Zhang X F, Li Y Q, et al. Solitons in Bose-Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic and complex potential. Phys Rev A, 2008, 78: 023608CrossRefGoogle Scholar
  20. 20.
    Zhang X F, Yang Q, Zhang J F, et al. Controlling soliton interactions in Bose-Einstein condensates by synchronizing the Feshbach resonance and harmonic trap. Phys Rev A, 2008, 77: 023613CrossRefGoogle Scholar
  21. 21.
    Zhang X F, Hu X H, Liu X X, et al. Vector solitons in two-component Bose-Einstein condensates with tunable interactions and harmonic potential. Phys Rev A, 2009, 79: 33630CrossRefGoogle Scholar
  22. 22.
    Liu X X, Pu H, Xiong B, et al. Formation and transformation of vector solitons in two-species Bose-Einstein condensates with a tunable interaction. Phys Rev A, 2009, 79: 013423CrossRefGoogle Scholar
  23. 23.
    Wang D S, Hu X H, Liu WM. Localized nonlinear matter waves in two-component Bose-Einstein condensates with time- and space-modulated nonlinearities. Phys Rev A, 2010, 82: 023612CrossRefGoogle Scholar
  24. 24.
    Hu X H, Zhang X F, Zhao D, et al. Dynamics and modulation of ring dark solitons in two-dimensional Bose-Einstein condensates with tunable interaction. Phys Rev A, 2009, 79: 023619CrossRefGoogle Scholar
  25. 25.
    Wang D S, Hu X H, Hu J P, et al. Quantized quasi-two-dimensional Bose-Einstein condensates with spatially modulated nonlinearity. Phys Rev A, 2010, 81: 025604CrossRefGoogle Scholar
  26. 26.
    Chen Y H, Wu W, Tao H S, et al. Cold atoms in a two-dimensional triangular optical lattice as an artificial frustrated system. Phys Rev A, 2010, 82: 043625CrossRefGoogle Scholar
  27. 27.
    Wu W, Chen Y H, Tao H S, et al. Interacting Dirac fermions on honeycomb lattice. Phys Rev B, 2010, 82: 245102CrossRefGoogle Scholar
  28. 28.
    Meng Z Y, Lang T C, Wessel S, et al. Quantum spin liquid emerging in two-dimensional correlated Dirac fermions. Nature, 2010, 464: 847–851CrossRefGoogle Scholar
  29. 29.
    Tran M T, Kuroki K. Finite-temperature semimetal-insulator transition on the honeycomb lattice. Phys Rev B, 2009, 79: 125125CrossRefGoogle Scholar
  30. 30.
    Sorella S, Tosatti E. Semi-metal-insulator transition of the hubbard model in the honeycomb lattice. Europhys Lett, 1992, 19: 699–704CrossRefGoogle Scholar
  31. 31.
    Honerkamp C. Density waves and cooper pairing on the honeycomb lattice. Phys Rev Lett, 2008, 100: 146404CrossRefGoogle Scholar
  32. 32.
    Martelo L M, Dzierzawa M, Siffert L, et al. Mott-Hubbard transition and antiferromagnetism on the honeycomb lattice. Z Phys B, 1997, 103: 335–338CrossRefGoogle Scholar
  33. 33.
    Zhu S L, Zhang D W, Wang Z D. Delocalization of relativistic Dirac particles in disordered one-dimensional systems and its implementation with cold atoms. Phys Rev Lett, 2009, 102: 210403CrossRefGoogle Scholar
  34. 34.
    Li Y, Bruder C, Sun C P. Generalized stern-gerlach effect for chiral molecules. Phys Rev Lett, 2007, 99: 130403CrossRefGoogle Scholar
  35. 35.
    Liu G C, Zhu S L, Jiang S J, et al. Simulating and detecting the quantum spin Hall effect in the kagome optical lattice. Phys Rev A, 2010, 82: 053605CrossRefGoogle Scholar
  36. 36.
    Lee C, Alexander T J, Kivshar Y S. Melting of discrete vortices via quantum fluctuations. Phys Rev Lett, 2006, 97: 180408CrossRefGoogle Scholar
  37. 37.
    Umucallar R O, Zhai H, Oktel M. Trapped fermi gases in rotating optical lattices: Realization and detection of the topological Hofstadter insulator. Phys Rev Lett, 2008, 100: 070402CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • XiaoFei Zhang
    • 1
    • 2
  • YaoHua Chen
    • 1
  • GuoCai Liu
    • 1
    • 3
  • Wei Wu
    • 1
  • Lin Wen
    • 1
  • WuMing Liu
    • 1
    Email author
  1. 1.Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
  2. 2.College of ScienceHonghe UniversityMengziChina
  3. 3.School of ScienceHebei University of Science and TechnologyShijiazhuangChina

Personalised recommendations