Advertisement

Chinese Science Bulletin

, Volume 57, Issue 16, pp 1919–1924 | Cite as

Quantum computation on gate-defined semiconductor quantum dots

  • HaiOu Li
  • Bing Yao
  • Tao Tu
  • GuoPing GuoEmail author
Open Access
Review Special Topic Quantum Information

Abstract

During the past few years, researchers have made significant progress on quantum information processing in gate controlled semiconductor quantum dots. We review the global research efforts, including works by our group, which provides pathways towards applications in quantum computation.

Keywords

quantum dot quantum computing 

References

  1. 1.
    Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. New York: Cambridge University Press, 2000Google Scholar
  2. 2.
    Kouwenhoven L, Marcus C. Quantum dots. Phys World, 1998, 6: 35–40Google Scholar
  3. 3.
    Kastner M A. The single-electron transistor. Rev Mod Phys, 1992, 64: 849–858CrossRefGoogle Scholar
  4. 4.
    DiVincenzo D P. Double quantum dot as a quantum bit. Science, 2005, 309: 2173–2174CrossRefGoogle Scholar
  5. 5.
    Van der Wiel W G, DeFranceschi S, Elzerman J M, et al. Electron transport through double quantum dots. Rev Mod Phys, 2003, 75: 1–22CrossRefGoogle Scholar
  6. 6.
    Cao G, Li H O, Tu T, et al. Electron states in parallel double quantum dots with a tunable inter-dot coupling. Chin Phys Lett, 2009, 26: 097302CrossRefGoogle Scholar
  7. 7.
    Loss D, DiVincenzo D P. Quantum computation with quantum dots. Phys Rev A, 1998, 57: 120–126CrossRefGoogle Scholar
  8. 8.
    Hanson R, Witkamp B, Vandersypen L M K. Zeeman energy and spin relaxation in a one-electron quantum dot. Phys Rev Lett, 2003, 91: 196802CrossRefGoogle Scholar
  9. 9.
    Koppens F H L, Buizert C, Tielrooij K J, et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature, 2006, 442: 766–771CrossRefGoogle Scholar
  10. 10.
    Petta J R, Johnson A C, Taylor J M, et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science, 2005, 309: 2180–2184CrossRefGoogle Scholar
  11. 11.
    Elzerman J M, Hanson R, Willems van Beveren L H, et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature, 2004, 430: 431–435CrossRefGoogle Scholar
  12. 12.
    Bluhm H, Folleti S, Neder I, et al. Dephasing time of GaAs electronspin qubits coupled to a nuclear bath exceeding 200 μs. Nat Phys, 2011, 7: 109–113CrossRefGoogle Scholar
  13. 13.
    Reilly D J, Taylor J M, Petta J R, et al. Suppressing spin qubit dephasing by nuclear state preparation. Science, 2008, 321: 817–820CrossRefGoogle Scholar
  14. 14.
    Hanson R, Kouwenhoven L P, Petta J R, et al. Spins in few-electron quantum dots. Rev Mod Phys, 2007, 79: 1217–1265CrossRefGoogle Scholar
  15. 15.
    Hanson R, Awschalom D D. Coherent manipulation of single spins in semiconductors. Nature, 2008, 453: 1043–1049CrossRefGoogle Scholar
  16. 16.
    Taylor J M, Engel H A, Dur W, et al. Fault-tolerant architecture for quantum computation using electrically controlled smiconductor spins. Nat Phys, 2005, 1: 177–183CrossRefGoogle Scholar
  17. 17.
    Folleti S, Bluhm H, Mahalu D, et al. Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization. Nat Phys, 2009, 5: 903–908CrossRefGoogle Scholar
  18. 18.
    Van Weperen I, Armstrong B D, Laird E A, et al. Charge-states conditional operation of a spin qubit. Phys Rev Lett, 2011, 107: 030506CrossRefGoogle Scholar
  19. 19.
    Guo G P, Zhang H, Tu T, et al. One-step preparation of cluster states in quantum-dot molecules. Phys Rev A, 2007, 75: 050301CrossRefGoogle Scholar
  20. 20.
    Zhang H, Guo G P, Tu T, et al. Quantum computation and Bell-state measurements with double dot molecules. Phys Rev A, 2007, 76: 012335CrossRefGoogle Scholar
  21. 21.
    Lin Z R, Zhu F Y, Tu T, et al. Generation of quantum-dot cluster states with superconducting transmission line resonator. Phys Rev Lett, 2008, 101: 230501CrossRefGoogle Scholar
  22. 22.
    Guo G P, Zhang H, Hu Y, et al. Dispersive coupling between the superconducting transmission line resonator and the double quantum dots. Phys Rev A, 2008, 78: 020302CrossRefGoogle Scholar
  23. 23.
    Xiao M, House M G, Jiang H W. Measurement of the spin relaxation time of single electron in a silicon metal oxide semiconductor based quantum dot. Phys Rev Lett, 2010, 104: 096801CrossRefGoogle Scholar
  24. 24.
    Shaji N, Simmons C B, Thalakulam M, et al. Spin blockade and lifetime-enhanced transport in a few-electron Si/SiGe double quantum dot. Nat Phys, 2008, 4: 540–544CrossRefGoogle Scholar
  25. 25.
    Hu Y J, Churchill O H, Reilly D J, et al. A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor. Nat Nanotech, 2007, 2: 622–625CrossRefGoogle Scholar
  26. 26.
    Ponomarenko L A, Schedin F, Katsnelson M I, et al. Chaotic Dirac billiard in graphene quantum dots. Science, 2008, 320: 356–358CrossRefGoogle Scholar
  27. 27.
    Wang L J, Cao G, Tu T, et al. Ground states and excited states in a tunable graphene quantum dot. Chin Phys Lett, 2011, 28: 067301CrossRefGoogle Scholar
  28. 28.
    Guo G P, Lin Z R, Li X P, et al. Quantum computation with graphene nanoribbon. New J Phys, 2009, 11: 123005CrossRefGoogle Scholar
  29. 29.
    Wang L J, Cao G, Tu T, et al. A graphene quantum dot with a single electron transistor as an integrated charge sensor. Appl Phys Lett, 2010, 97: 262113CrossRefGoogle Scholar
  30. 30.
    Wang L J, Guo G P, Wei D, et al. Gates controlled parallel-coupled double quantum dot on both single layer and bilayer graphene. Appl Phys Lett, 2011, 99: 112117CrossRefGoogle Scholar
  31. 31.
    Ladd T D, Jelezko F, Laflamme R, et al. Quantum computers. Nature, 2010, 464: 45–53CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Key Laboratory of Quantum Information, Chinese Academy of SciencesUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations