Chinese Science Bulletin

, Volume 57, Issue 16, pp 1893–1902 | Cite as

Quantum storage of optical signals and coherent manipulation of quantum states based on electromagnetically induced transparency

  • Hai WangEmail author
  • ChangDe Xie
  • KunChi Peng
Open Access
Review Special Topic Quantum Information


Electromagnetically induced transparency (EIT) techniques are important tools for the storage of the quantum states of light fields in atomic ensembles and for enhancement of the interaction between photons. In this paper, we briefly summarize the recent experimental studies conducted by our group on enhanced cross-phase modulation based on double EIT effects, the quantum interference of stored dual-channel spin-wave excitations and the coherent manipulation of the spin wave vector for the polarization of photons in a single tripod atomic system. The work presented here has potential application in the developing field of quantum information processing.


electromagnetically induced transparency (EIT) atomic ensembles quantum storage enhanced cross-phase modulation coherent manipulation of the spin wave 


  1. 1.
    Lukin M D, Imamoglu A. Controlling photons using electromagnetically induced transparency. Nature, 2001, 413: 273–276CrossRefGoogle Scholar
  2. 2.
    Lukin M D. Trapping and manipulating photon states in atomic ensembles. Rev Mod Phys, 2003, 75: 457–472CrossRefGoogle Scholar
  3. 3.
    Liu C, Dutton Z, Behroozi C H, et al. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature, 2001, 409: 490–493CrossRefGoogle Scholar
  4. 4.
    Phillips D F, Fleischhauer A, Mair A, et al. Storage of light in atomic vapor. Phys Rev Lett, 2001, 86: 783–786CrossRefGoogle Scholar
  5. 5.
    Van der Wal C H, Eisaman M D, André A, et al. Atomic memory for correlated photon states. Science, 2003, 301: 196–200CrossRefGoogle Scholar
  6. 6.
    Matsukevich D N, Chanelière T, Bhattacharya M, et al. Entanglement of a photon and a collective atomic excitation. Phys Rev Lett, 2005, 95: 040405CrossRefGoogle Scholar
  7. 7.
    De Riedmatten H, Laurat J, Chou C W, et al. Direct measurement of decoherence for entanglement between a photon and stored atomic excitation. Phys Rev Lett, 2006, 97: 113603CrossRefGoogle Scholar
  8. 8.
    Zhao R, Dudin Y O, Jenkins S D, et al. Long-lived quantum memory. Nat Phys, 2009, 5: 100–104CrossRefGoogle Scholar
  9. 9.
    Zhao B, Chen Y A, Bao X H, et al. A millisecond quantum memory for scalable quantum networks. Nat Phys, 2009, 5: 95–99CrossRefGoogle Scholar
  10. 10.
    Li S J, Yang X D, Cao X M, et al. Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a four-level tripod atomic system. Phys Rev Lett, 2008, 101: 073602CrossRefGoogle Scholar
  11. 11.
    Wang H, Li S J, Xu Z X, et al. Quantum interference of stored dual-channel spin-wave excitations in a single tripod system. Phys Rev A, 2011, 83: 043815CrossRefGoogle Scholar
  12. 12.
    Li S J, Xu Z X, Zheng H Y, et al. Coherent manipulation of spin-wave vector for polarization of photons in an atomic ensemble. Phys Rev A, 2011, 84: 043430CrossRefGoogle Scholar
  13. 13.
    Turchette Q A, Hood C J, Lange W, et al. Measurement of conditional phase shifts for quantum logic. Phys Rev Lett, 1995, 75: 4710–4713CrossRefGoogle Scholar
  14. 14.
    Rebić S, Vitali D, Ottaviani C, et al. Polarization phase gate with a tripod atomic system. Phys Rev A, 2004, 70: 032317CrossRefGoogle Scholar
  15. 15.
    Joshi A, Xiao M. Phase gate with a four-level inverted-Y system. Phys Rev A, 2005, 72: 062319CrossRefGoogle Scholar
  16. 16.
    Lukin M D, Imamoğlu A. Nonlinear optics and quantum entanglement of ultraslow single photons. Phys Rev Lett, 2000, 84: 1419–1422CrossRefGoogle Scholar
  17. 17.
    Nemoto K, Munro W J. Nearly deterministic linear optical controlled-NOT gate. Phys Rev Lett, 2004, 93: 250502CrossRefGoogle Scholar
  18. 18.
    Barrett S D, Kok P, Nemoto K, et al. Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys Rev A, 2005, 71: 060302 (R)Google Scholar
  19. 19.
    Munro W J, Nemoto K, Spiller T P. Weak nonlinearities: A new route to optical quantum computation. New J Phys, 2005, 7: 137CrossRefGoogle Scholar
  20. 20.
    Schmidt H, Imamogdlu A. Giant Kerr nonlinearities obtained electromagnetically induced transparency. Opt Lett, 1996, 21: 1936–1938CrossRefGoogle Scholar
  21. 21.
    Kang H, Zhu Y F. Observation of large Kerr nonlinearity at low light intensities. Phys Rev Lett, 2003, 91: 093601CrossRefGoogle Scholar
  22. 22.
    Harris S E, Hau L V. Nonlinear optics at low light levels. Phys Rev Lett, 1999, 82: 4611–4614CrossRefGoogle Scholar
  23. 23.
    Petrosyan D, Kurizki G. Symmetric photon-photon coupling by atoms with Zeeman-split sublevels. Phys Rev A, 2002, 65: 033833CrossRefGoogle Scholar
  24. 24.
    Wang Z B, Marzlin K P, Sanders B C. Large cross-phase modulation between slow copropagating weak pulses in 87Rb. Phys Rev Lett, 2006, 97: 063901CrossRefGoogle Scholar
  25. 25.
    Li S J, Yang X D, Cao X M, et al. Two electromagnetically induced transparency windows and an enhanced electromagnetically induced transparency signal in a four-level tripod atomic system. J Phys B: At Mol Opt Phys, 2007, 40: 3211–3219CrossRefGoogle Scholar
  26. 26.
    Schnorrberger U, Thompson J D, Trotzky S, et al. Electromagnetically induced transparency and light storage in an atomic Mott insulator. Phys Rev Lett, 2009, 103: 033003CrossRefGoogle Scholar
  27. 27.
    Zhang R, Garner S R, Hau L V. Creation of long-term coherent optical memory via controlled nonlinear interactions in Bose-Einstein condensates. Phys Rev Lett, 2009, 103: 233602CrossRefGoogle Scholar
  28. 28.
    Matsukevich D N, Chanelière T, Bhattacharya M, et al. Entanglement of a photon and a collective atomic excitation. Phys Rev Lett, 2005, 95: 040405CrossRefGoogle Scholar
  29. 29.
    Joshi A, Xiao M. Generalized dark-state polaritons for photon memory in multilevel atomic media. Phys Rev A, 2005, 71: 041801 (R)CrossRefGoogle Scholar
  30. 30.
    Raczyński A, Zaremba J, Zielińska-Kaniasty S. Beam splitting and Hong-Ou-Mandel interference for stored light. Phys Rev A, 2007, 75: 013810CrossRefGoogle Scholar
  31. 31.
    Wang B, Han Y X, Xiao J T, et al. Preparation and determination of spin-polarized states in multi-Zeeman-sublevel atoms. Phys Rev A, 2007, 75: 051801 (R)Google Scholar
  32. 32.
    Duan L M, Lukin M D, Cirac J I, et al. Long-distance quantum communication with atomic ensembles and linear optics. Nature, 2001, 414: 413–418CrossRefGoogle Scholar
  33. 33.
    Duan L M. Entangling many atomic ensembles through laser manipulation. Phys Rev Lett, 2002, 88: 170402CrossRefGoogle Scholar
  34. 34.
    Dudin Y O, Jenkins S D, Zhao R, et al. Entanglement of a photon and an optical lattice spin wave. Phys Rev Lett, 2009, 103: 020505CrossRefGoogle Scholar
  35. 35.
    Chen S, Chen Y A, Zhao B, et al. Demonstration of a stable atom-photon entanglement source for quantum repeaters. Phys Rev Lett, 2007, 99: 180505CrossRefGoogle Scholar
  36. 36.
    Tanji H, Ghosh S, Simon J, et al. Heralded single-magnon quantum memory for photon polarization states. Phys Rev Lett, 2009, 103: 043601CrossRefGoogle Scholar
  37. 37.
    Dong P, Xue Z Y, Yang M, et al. Generation of cluster states. Phys Rev A, 2006, 73: 033818CrossRefGoogle Scholar
  38. 38.
    Hanneke D, Home J P, Jost J D, et al. Realization of a programmable two-qubit quantum processor. Nat Phys, 2010, 6: 13–16CrossRefGoogle Scholar
  39. 39.
    Yavuz D D, Kulatunga P B, Urban E, et al. Fast ground state manipulation of neutral atoms in microscopic optical traps. Phys Rev Lett, 2006, 96: 063001CrossRefGoogle Scholar
  40. 40.
    Jones M P A, Beugnon J, Gaëtan A, et al. Fast quantum state control of a single trapped neutral atom. Phys Rev A, 2007, 75: 040301CrossRefGoogle Scholar
  41. 41.
    Press D, Ladd T D, Zhang B Y, et al. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature, 2008, 456: 218–221CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-ElectronicsShanxi UniversityTaiyuanChina

Personalised recommendations