Advertisement

Chinese Science Bulletin

, Volume 57, Issue 16, pp 1998–2006 | Cite as

Rare earth elements and carbon isotope geochemistry of the Doushantuo Formation in South China: Implication for middle Ediacaran shallow marine redox conditions

  • ChuanMing ZhouEmail author
  • ShaoYong Jiang
  • ShuHai Xiao
  • Zhe Chen
  • XunLai Yuan
Open Access
Article Geochemistry

Abstract

The middle Ediacaran Shuram excursion, the largest negative δ 13Ccarb excursion in Earth history, has been interpreted as indirect evidence for episodic oxidation and remineralization of deep ocean DOC (dissolved organic carbon). It has been hypothesized that such oxidation event may have occurred when anoxic DOC-laden deep water was brought to shallow shelves during oceanic upwelling, which is expected to cause localized anoxia in shallow environments. To test this prediction, we systematically analyzed rare earth elements (REE) and δ 13Ccarb of the upper Doushantuo Formation carbonates in the Yangtze Gorges area of South China, which were deposited in an inner shelf environment and record a large negative δ 13Ccarb excursion correlated to the Shuram event. The REE data show a significant positive shift in Ce/Ce* values, synchronous with a pronounced negative δ 13Ccarb shift. This positive Ce/Ce* shift is interpreted to represent an oceanic anoxia event in shallow shelf environments, which may have been caused by the upwelling or impingement of oxygen-depleted and 12C-enriched deep water onto shelves. This anoxia event coincides with a sharp decline in the abundance and diversity of Ediacaran acanthomorphic acritarchs, raising the possibility that these two geobiological events may be causally related.

Keywords

REE marine anoxia Doushantuo Formation Yangtze Gorges South China 

Supplementary material

11434_2012_5082_MOESM1_ESM.pdf (1.3 mb)
Supplementary material, approximately 1.30 MB.

References

  1. 1.
    Fike D A, Grotzinger J P, Pratt L M, et al. Oxidation of the Ediacaran ocean. Nature, 2006, 444: 744–747CrossRefGoogle Scholar
  2. 2.
    McFadden K A, Huang J, Chu X, et al. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proc Natl Acad Sci USA, 2008, 105: 3197–3202CrossRefGoogle Scholar
  3. 3.
    Zhou C, Xie G, McFadden K, et al. The diversification and extinction of Doushantuo-Pertatataka acritarchs in South China: Causes and biostratigraphic significance. Geol J, 2007, 42: 229–262CrossRefGoogle Scholar
  4. 4.
    Xiao S, Laflamme M. On the eve of animal radiation: Phylogeny, ecology and evolution of the Ediacara biota. Trend Ecol Evol, 2008, 24: 31–40CrossRefGoogle Scholar
  5. 5.
    Zhou C, Brasier M D, Xue Y. Three-dimensional phosphatic preservation of giant acritarchs from the terminal Proterozoic Doushantuo Formation in Guizhou and Hubei provinces, South China. Palaeontology, 2001, 44: 1157–1178CrossRefGoogle Scholar
  6. 6.
    Cohen P A, Knoll A H, Kodner R B. Large spinose microfossils in Ediacaran rocks as resting stages of early animals. Proc Natl Acad Sci USA, 2009, 106: 6519–6524CrossRefGoogle Scholar
  7. 7.
    Grotzinger J P, Fike D A, Fischer W W. Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history. Nat Geosci, 2011, 4: 285–292CrossRefGoogle Scholar
  8. 8.
    Jiang G, Shi X, Zhang S, et al. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) in South China. Gondwana Res, 2011, 19: 831–849CrossRefGoogle Scholar
  9. 9.
    Bristow T F, Kennedy M J, Derkowski A, et al. Mineralogical constraints on the paleoenvironments of the Ediacaran Doushantuo Formation. Proc Natl Acad Sci USA, 2009, 106: 13190–13195CrossRefGoogle Scholar
  10. 10.
    Vernhet E, Reijmer J J G. Sedimentary evolution of the Ediacaran Yangtze platform shelf (Hubei and Hunan provinces, Central China). Sediment Geol, 2010, 225: 99–115CrossRefGoogle Scholar
  11. 11.
    McFadden K A, Xiao S, Zhou C, et al. Quantitative evaluation of the biostratigraphic distribution of acanthomorphic acritarchs in the Ediacaran Doushantuo Formation in the Yangtze Gorges area, South China. Precambrian Res, 2009, 173: 170–190CrossRefGoogle Scholar
  12. 12.
    Shen B, Xiao S, Zhou C, et al. Yangtziramulus zhangi new genus and species, a carbonate-hosted macrofossil from the Ediacaran Dengying Formation in the Yangtze Gorges area, South China. J Paleontol, 2009, 83: 575–587CrossRefGoogle Scholar
  13. 13.
    Xiao S, Shen B, Zhou C, et al. A uniquely preserved Ediacaran fossil with direct evidence for a quilted bodyplan. Proc Natl Acad Sci USA, 2005, 102: 10227–10232CrossRefGoogle Scholar
  14. 14.
    Zhou C, Xiao S. Ediacaran δ 13C chemostratigraphy of South China. Chem Geol, 2007, 237: 89–108CrossRefGoogle Scholar
  15. 15.
    Zhu M, Gehling J G, Xiao S, et al. Eight-armed Ediacara fossil preserved in contrasting taphonomic windows from China and Australia. Geology, 2008, 36: 867–870CrossRefGoogle Scholar
  16. 16.
    German C R, Elderfield H. Application of the Ce anomaly as a paleoredox indicator: The ground rules. Paleoceanography, 1990, 5: 823–833CrossRefGoogle Scholar
  17. 17.
    Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy. Geochim Cosmochim Acta, 2000, 64: 1557–1565CrossRefGoogle Scholar
  18. 18.
    Jiang G, Kaufman A J, Christie-Blick N, et al. Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surface-to-deep ocean δ 13C gradient. Earth Planet Sci Lett, 2007, 261: 303–320CrossRefGoogle Scholar
  19. 19.
    Yin C, Liu P, Awramik S M, et al. Acanthomorph biostratigraphic succession of the Ediacaran Doushantuo Formation in the east Yangtze Gorges, South China. Acta Geol Sin, 2011, 85: 283–295CrossRefGoogle Scholar
  20. 20.
    Zhu M, Zhang J, Yang A. Integrated Ediacaran (Sinian) chronostratigraphy of South China. Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 254: 7–61CrossRefGoogle Scholar
  21. 21.
    Zhao Y Y, Zheng Y F, Chen F. Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China. Chem Geol, 2009, 265: 345–362CrossRefGoogle Scholar
  22. 22.
    German C R, Holliday B P, Elderfield H. Redox cycling of rare earth elements in the suboxic zone of the Black Sea. Geochim Cosmochim Acta, 1991, 55: 3553–3558Google Scholar
  23. 23.
    Komiya T, Hirata T, Kitajima K, et al. Evolution of the composition of seawater through geologic time, and its influence on the evolution of life. Gondwana Res, 2008, 14: 159–174CrossRefGoogle Scholar
  24. 24.
    Shields G, Stille P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites. Chem Geol, 2001, 175: 29–48CrossRefGoogle Scholar
  25. 25.
    Sawaki Y, Ohno T, Tahata M, et al. The Ediacaran radiogenic Sr isotope excursion in the Doushantuo Formation in the Three Gorges area, South China. Precambrian Res, 2010, 176: 46–64CrossRefGoogle Scholar
  26. 26.
    Halverson G P, Dudás F Ö, Maloof A C, et al. Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 256: 103–129CrossRefGoogle Scholar
  27. 27.
    Elderfield H, Whitfield M, Burton J D, et al. The oceanic chemistry of the rare-earth elements [and discussion]. Philos Trans R Soc Lond Ser A Mathemat Phys Sci, 1988, 325: 105–126CrossRefGoogle Scholar
  28. 28.
    Bolhar R, Van Kranendonk M J. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates. Precambrian Res, 2007, 155: 229–250CrossRefGoogle Scholar
  29. 29.
    Sholkovitz E R. Chemical evolution of rare earth elements: Fractionation between colloidal and solution phases of filtered river water. Earth Planet Sci Lett, 1992, 114: 77–84CrossRefGoogle Scholar
  30. 30.
    Frimmel H E. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator. Chem Geol, 2009, 258: 338–353CrossRefGoogle Scholar
  31. 31.
    Canfield D E, Poulton S W, Knoll A H, et al. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science, 2008, 321: 949–952CrossRefGoogle Scholar
  32. 32.
    Li C, Love G D, Lyons T W, et al. A stratified redox model for the Ediacaran ocean. Science, 2010, 328: 80–83CrossRefGoogle Scholar
  33. 33.
    Shen Y N, Zhang T G, Hoffman P F. On the coevolution of Ediacaran oceans and animals. Proc Natl Acad Sci USA, 2008, 105: 7376–7381CrossRefGoogle Scholar
  34. 34.
    Yuan X, Chen Z, Xiao S, et al. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature, 2011, 470: 390–393CrossRefGoogle Scholar
  35. 35.
    Zhou C, Jiang S-Y. Palaeoceanographic redox environments for the lower Cambrian Hetang Formation in South China: Evidence from pyrite framboids, redox sensitive trace elements, and sponge biota occurrence. Palaeogeogr Palaeoclimatol Palaeoecol, 2009, 271: 279–286CrossRefGoogle Scholar
  36. 36.
    Wright J, Schrader H, Holser W T. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochim Cosmochim Acta, 1987, 51: 631–644CrossRefGoogle Scholar
  37. 37.
    Chen D F, Dong W Q, Qi L, et al. Possible REE constraints on the depositional and diagenetic environment of Doushantuo Formation phosphorites containing the earliest metazoan fauna. Chem Geol, 2003, 201: 103–118CrossRefGoogle Scholar
  38. 38.
    Kaufman A J, Jiang G, Christie-Blick N, et al. Stable isotope record of the terminal Neoproterozoic Krol platform in the Lesser Himalayas of northern India. Precambrian Res, 2006, 147: 156–185CrossRefGoogle Scholar
  39. 39.
    Le Guerroué E, Allen P A, Cozzi A. Chemostratigraphic and sedimentological framework of the largest negative carbon isotopic excursion in Earth history: The Neoproterozoic Shuram Formation (Nafun Group, Oman). Precambrian Res, 2006, 146: 68–92CrossRefGoogle Scholar
  40. 40.
    Walter M R, Veevers J J, Calver C R, et al. Dating the 840-544 Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater, and some interpretative models. Precambrian Res, 2000, 100: 371–433CrossRefGoogle Scholar
  41. 41.
    Grey K. Ediacaran palynology of Australia. Mem Assoc Australian Palaeontol, 2005, 31: 1–439Google Scholar
  42. 42.
    Yin L, Zhu M, Knoll A H, et al. Doushantuo embryos preserved inside diapause egg cysts. Nature, 2007, 446: 661–663CrossRefGoogle Scholar
  43. 43.
    Butterfield N J. Plankton ecology and the Proterozoic-Phanerozoic transition. Paleobiology, 1997, 23: 247–262Google Scholar
  44. 44.
    Pokrovskii B G, Melezhik V A, Bujakaite M I. Carbon, oxygen, strontium, and sulfur isotopic compositions in late Precambrian rocks of the Patom Complex, Central Siberia: Communication 1. Results, isotope stratigraphy, and dating problems. Lithol Miner Resour, 2006, 41: 450–474CrossRefGoogle Scholar
  45. 45.
    Vorob’eva N G, Sergeev V N, Chumakov N M. New finds of Early Vendian microfossils in the Ura Formation: Revision of the Patom Supergroup age, middle Siberia. Doklady Earth Sci, 2008, 419A: 411–416CrossRefGoogle Scholar
  46. 46.
    Kimura H, Watanabe Y. Oceanic anoxia at the Precambrian-Cambrian boundary. Geology, 2001, 29: 995–998CrossRefGoogle Scholar
  47. 47.
    Schröder S, Grotzinger J P. Evidence for anoxia at the Ediacaran-Cambrian boundary: The record of redox-sensitive trace elements and rare earth elements in Oman. J Geol Soc, 2007, 164: 175–187CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • ChuanMing Zhou
    • 1
    Email author
  • ShaoYong Jiang
    • 2
  • ShuHai Xiao
    • 1
    • 3
  • Zhe Chen
    • 1
  • XunLai Yuan
    • 1
  1. 1.State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and PalaeontologyChinese Academy of SciencesNanjingChina
  2. 2.State Key Laboratory for Mineral Deposits Research, Department of Earth SciencesNanjing UniversityNanjingChina
  3. 3.Department of GeosciencesVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations