Chinese Science Bulletin

, Volume 57, Issue 16, pp 2022–2028 | Cite as

The hemocompatibility and the reabsorption function of TiO2 nanotubes biomembranes

  • JiWei Li
  • Wen ZhuEmail author
  • JianFeng Liu
  • Xi Liu
  • HuiQiong Liu
Open Access
Article Materials Science


A novel high-intensity TiO2 nanotubes array membrane was fabricated via electrochemical anodization of highly pure titanium foil and an open-ended TiO2 nanotubes array membrane was obtained by HF gas etching at the bottom of the nanotubes. Pig tubular epithelial cells (LLC-PK1) and vascular endothelial cells (ECV304) were cultivated on the open-ended TiO2 nanotubes surface through a mixing implantation method and TiO2 nanotubes biomembrane materials with physiological function were successfully produced. Hemocompatibility of glass slides, pure titanium, TiO2 nanotubes without cells and TiO2 nanotubes with culture cells were investigated by the plasma recalcification time method and reabsorption of sodium and potassium were measured by custom-designed devices. The results show that the hemocompatibility of the TiO2 nanotubes array membrane with culture cells was superior to the control group, and the biomembrane has an excellent reabsorption function. This demonstrates that a TiO2 nanotubes array membrane has excellent physiological function and is an ideal candidate material for biological dialysis.


TiO2 nanotube arrays hemocompatibility reabsorption function biomembrane 


  1. 1.
    Humes H D, Mackay S M, Funke A J, et al. Tissue engineering of the bioartificial renal tubule assist device: In vitro transport and metabolic characteristics. Kid Int, 1999, 55: 2502–2514CrossRefGoogle Scholar
  2. 2.
    Ozgen N, Terashima1 M, Aung T, et al. Evaluation of long-term transport ability of a bioartificial renal tubule device using LLC-PK1 cells. Nephrol Dial Trans, 2004, 19: 2198–2207CrossRefGoogle Scholar
  3. 3.
    Humes H D. The bioartificial renal tubule: Prospects to improve supportive care in acute renal failure. Renal Fail, 1996, 18: 405–408CrossRefGoogle Scholar
  4. 4.
    Humes H D, Buffington D A, Mackay S M, et al. Replacement of renal function in uremic animals with a tissue-engineered kidney. Nat Biotech, 1999, 17: 451–455CrossRefGoogle Scholar
  5. 5.
    Humes H D, Weitzel W F, Bartlett R H, et al. Initial clinical results of the bioartificial kidney containing human cells in ICU patients with acute renal failure. Kid Int, 2004, 66: 1578CrossRefGoogle Scholar
  6. 6.
    Humes H D. Stem cells: The next therapeutic frontier. Transthe Amer Clin Climatol Assoc, 2005, 116: 167–184Google Scholar
  7. 7.
    Fissell W H, Lou L, Abrishami S, et al. Bioartificial kidney ameliorates gram-negative bacteria-induced septic shock in uremic animals. J Amer Soc Nephrol, 2003, 14: 454–461CrossRefGoogle Scholar
  8. 8.
    Wang X Y, Ying X M, Shen X. The construction of bioartificial renal tubule assist device in vitro. Acta Univ Medi Nanjing, 2001, 21: 167Google Scholar
  9. 9.
    Huang D W, Fu B, Chen X M, et al. Mixing implantation for construction of bioartificial renal tubule: A preliminary study. Chin Remedies Clin, 2008, 8: 165–167Google Scholar
  10. 10.
    Huang D W. The construction and evaluation of function for bioartificial kidney nephron in vitro. Dissertation for the Doctoral Degree. Beijing: Chinese People’s Liberation Army Postgraduate Medical School, 2008. 28–55Google Scholar
  11. 11.
    Fissell W H, Dubnisheva A, Eldridge A N, et al. High-performance silicon nanopore hemofiltration membranes. J Membrane Sci, 2009, 326: 58CrossRefGoogle Scholar
  12. 12.
    Zeman L J, Zydney A L. Microfiltration and Ultrafiltration: Principles and Applications. New York: Marcel Dekker, 1996Google Scholar
  13. 13.
    Roy S, Dubnisheva A, Eldridge A, et al. Silicon nanopore membrane technology for an implantable artificial kidney. Transducers, 2009, 755–760Google Scholar
  14. 14.
    Peng L, Barczak A J, Barbeau R A, et al. Whole genome expression analysis reveals differential effects of TiO2 nanotubes on vascular cells. Nano Lett, 2010, 10: 143–148CrossRefGoogle Scholar
  15. 15.
    Smith B S, Yoriya S, Grissom L, et al. Hemocompatibility of titania nanotube array. J Biomed Mater Res Part A, 2010, 95: 350–360CrossRefGoogle Scholar
  16. 16.
    Ainslie K M, Tao S L, Popat, K C, et al. In vitro inflammatory response of nanostructured titania, silicon oxide, and polycaprolactone. J Biomed Mater Res Part A, 2009, 91A: 647–655CrossRefGoogle Scholar
  17. 17.
    Popat K, Leoni L, Grimes C, et al. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials, 2007, 28: 3188–3197CrossRefGoogle Scholar
  18. 18.
    Peng L, Eltgroth M L, LaTempa T J, et al. The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation. Biomaterials, 2009, 30: 1268–1272CrossRefGoogle Scholar
  19. 19.
    Tao J, Tao H J, Bao Z G, et al. Growth mechanism of TiO2 nanotube arrays on titanium substrate in organic electrolyte. Rare Metal Mater Eng, 2009, 38: 967–971Google Scholar
  20. 20.
    Zhu W, Liu X, Liu H Q, et al. An efficient approach to control the morphology and the adhesion properties of anodized TiO2 nanotube arrays for improved photoconversion efficiency. Electrochim Acta, 2011, 56: 2618–2626CrossRefGoogle Scholar
  21. 21.
    Zhu W, Liu X, Liu H Q, et al. Coaxial heterogeneous structure of TiO2 nanotube arrays with CdS as a superthin coating synthesized via modified electrochemical atomic layer deposition. J Am Chem Soc, 2010, 132: 12619–12626CrossRefGoogle Scholar
  22. 22.
    Zhu W, Liu X, Liu H Q, et al. Control of surface morphology of highly ordered TiO2 nanotube arrays and the photoelectrochemical properties. Rare Metal Mater Eng, 2011, 40: 1069–1074Google Scholar
  23. 23.
    Roy P, Berger S, Schmuki. TiO2 nanotubes: Synthesis and applications. Ange Chem Int Ed, 2011, 50: 2904–2939CrossRefGoogle Scholar
  24. 24.
    Yang L X, Luo S L, Cai Q Y. A review on TiO2 nanotube arrays: Fabrication, properties, and sensing applications. Chin Sci Bull, 2010, 55: 331–338CrossRefGoogle Scholar
  25. 25.
    Yang L X, Luo S L, Cai Q Y, et al. Preparation, research the properties and sensor application of Titanium dioxide nanotubes array. Chin Sci Bull, 2009, 54: 3605–3611Google Scholar
  26. 26.
    Ji H M, Lu H X, Ma D F, et al. Preparation and hydrogen gas sensitive characteristics of highly ordered titania nanotube arrays. Chin Sci Bull, 2008, 53,9: 1352–1357CrossRefGoogle Scholar
  27. 27.
    Kant K, Losic D. A simple approach for synthesis of TiO2 nanotubes with through-hole morphology. Phys Status Solidi, 2009, 3: 139–141Google Scholar
  28. 28.
    Paulose M, Prakasam H E, Varghese O K, et al. TiO2 nanotube arrays of 1000 μm length by anodization of titanium foil: Phenol red diffusion. J Phys Chem C, 2007, 111: 14992–14997CrossRefGoogle Scholar
  29. 29.
    Liu H Q, Zhu W, Liu J F, et al. The effect of surface characteristics of TiO2 nanotube arrays on porcine renal tubular epithelial cell growth. Sci Sin Vitae, 2011, 41: 249–257Google Scholar
  30. 30.
    Xu F J, Li Y L, Kang E T, et al. Heparin-coupled poly(poly(ethy-leneglycol)monomethacrylate)-Si(111) hybrids and their blood compatible surfaces. Biomacromolecules, 2005, 6: 1759–1768CrossRefGoogle Scholar
  31. 31.
    Wang D A, Ji J, Feng L X. Selective binding of albumin on stearyl poly(ethylene oxide) coupling polymer-modified poly(ether urethane) surfaces. Biomaterials, 2001, 12: 1123–1146CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • JiWei Li
    • 1
  • Wen Zhu
    • 1
    Email author
  • JianFeng Liu
    • 2
  • Xi Liu
    • 1
  • HuiQiong Liu
    • 1
  1. 1.State Key Laboratory of Materials Processing and Die & Mould TechnologyHuazhong University of Science and TechnologyWuhanChina
  2. 2.School of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations