Advertisement

Chinese Science Bulletin

, Volume 57, Issue 16, pp 1959–1963 | Cite as

A novel Co(phen)2/C catalyst for the oxygen electrode in rechargeable lithium air batteries

  • Hong Wang
  • XiaoZhen LiaoEmail author
  • QiZhong Jiang
  • XiaoWei Yang
  • YuShi He
  • ZiFeng MaEmail author
Open Access
Article Physical Chemistry

Abstract

A novel Co(phen)2/C catalyst was prepared by coating cobalt(II) phenanthroline (phen) chelate on BP2000 carbon black and then heat treating in an inert atmosphere. The obtained Co(phen)2/C product with 1.0 wt% cobalt loading exhibits similar morphology and porosity characteristics to those of the bare BP2000. X-ray diffraction measurements demonstrate a face-centered cubic (fcc) α-Co phase embedded in the carbon support after pyrolysis. Charge/discharge tests of the lithium-oxygen cells using the prepared Co(phen)2/C catalyst show high discharge capacities of 4870 mAh g−1 (0.05 mA cm−2), 3353 mAh g−1 (0.1 mA cm−2) and 3220 mAh g−1 (0.15 mA cm−2), respectively. The Co(phen)2/C cathode exhibits reasonable reversibility with capacity retention of 1401 mAh g−1 (0.1 mA cm−2) after 10 cycles. The superior electrochemical performance of the prepared Co(phen)2/C catalyst and low cost of the phenanthroline chelating agent indicate that Co(phen)2/C is a promising cheap catalyst for lithium-air batteries.

Keywords

rechargeable lithium-air batteries cobalt phenanthroline catalyst oxygen electrode 

References

  1. 1.
    Abraham K M, Jiang Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc, 1996, 143: 1–5CrossRefGoogle Scholar
  2. 2.
    Read J, Mutolo K, Ervin M, et al. Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery. J Electrochem Soc, 2003, 150: 1351–1356CrossRefGoogle Scholar
  3. 3.
    Kuboki T, Okuyama T, Ohsaki T, et al. Lithium-air batteries using hydrophobic room temperature ionic lipuid electrolyte. J Power Sources, 2005, 146: 766–769CrossRefGoogle Scholar
  4. 4.
    Sandhu S S, Fellner J P, Bructchen G W. Diffusion-limited model for a lithium/air battery with an organic electrolyte. J Power Sources, 2007, 164: 365–371CrossRefGoogle Scholar
  5. 5.
    Ogasawara T, Debart A, Holzapfel M, et al. Rechargeable Li2O2 electrode for lithium batteries. J Am Chem Soc, 2006, 128: 1390–1393CrossRefGoogle Scholar
  6. 6.
    Zheng J P. The theoretical energy density of Li-air batteries. J Electrochem Soc, 2008, 155: A432–A437CrossRefGoogle Scholar
  7. 7.
    Beattie S D, Manolescu D M, Blair S L. High-capacity lithium-air cathodes. J Electrochem Soc, 2009, 156: A44–A47CrossRefGoogle Scholar
  8. 8.
    Crowther O, Meyer B, Morgan M, et al. Primary Li-air cell development. J Power Sources, 2011, 196: 1498–1502CrossRefGoogle Scholar
  9. 9.
    Padbury R, Zhang X W. Lithium-oxygen batteries limiting factors that affect performance. J Power Sources, 2011, 196: 4436–4444CrossRefGoogle Scholar
  10. 10.
    Wang Y G, Zhou H S. A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy. J Power Sources, 2010, 195: 358–361CrossRefGoogle Scholar
  11. 11.
    Zhang S S, Xu K, Read J. A non-aqueous electrolyte for the operation of Li/air battery in ambient environment. J Power Sources, 2011, 196: 3906–3910CrossRefGoogle Scholar
  12. 12.
    Kichambare P, Kumar J, Rodrigues S, et al. Electrochemical performance of highly mesoporous nitrogen doped carbon cathode in lithium-oxygen batteries. J Power Sources, 2011, 196: 3310–3316CrossRefGoogle Scholar
  13. 13.
    Shimonishi Y, Zhang T, Imanishia N, et al. A study on lithium/air secondary batteries-Stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions. J Power Sources, 2011, 196: 5128–5132CrossRefGoogle Scholar
  14. 14.
    Ma Y B, Li N, Li D Y, et al. Performance of Mg-14Li-1Al-0.1Ce as anode for Mg-air battery. J Power Sources, 2011, 196: 2346–2349CrossRefGoogle Scholar
  15. 15.
    Kraytsberg A, Ein-Eli Y. Review on Li-air batteries-opportunities, limitations and perspective. J Power Sources, 2011, 196: 886–893CrossRefGoogle Scholar
  16. 16.
    Zhang T, Imanishi N, Hasegawa S, et al. Li/polymer electrolyte/water stable lithium-Conducting glass ceramics composite for lithium air secondary batteries with an aqueous electrolyte. J Electrochem Soc, 2008, 155: A965–A969CrossRefGoogle Scholar
  17. 17.
    Kumar B, Kumar J, Leese R, et al. A solid state, rechargeable lithium-air battery. J Electrochem Soc, 2010, 157: A50–A54CrossRefGoogle Scholar
  18. 18.
    Xu W, Viswanathan V V, Wang D, et al. Investigation on the charging process of Li2O2-based air electrodes in Li-O2 batteries with organic carbonate electrolytes. J Power Sources, 2011, 196: 3894–3899CrossRefGoogle Scholar
  19. 19.
    Xiao J, Wang D H, Xu W, et al. Optimization of air electrode for Li/air batteries. J Electrochem Soc, 2010, 157: A487–A492CrossRefGoogle Scholar
  20. 20.
    Zhang G Q, Zheng J P, Liang R, et al. Lithium-air batteries using SWNT/CNF buckypapers as air electrode. J Electrochem Soc, 2010, 157: A953–A956CrossRefGoogle Scholar
  21. 21.
    Williford R E, Zhang J G. Air electrode design for sustained high power operation of Li/air batteries. J Power Sources, 2009, 194: 1164–1170CrossRefGoogle Scholar
  22. 22.
    Zhang D, Li R S, Huang T, et al. Novel composite polymer electrolyte for lithium air batteries. J Power Sources, 2010, 195: 1202–1206CrossRefGoogle Scholar
  23. 23.
    Shimonishi Y, Zhang T, Johnson P, et al. A study on lithium/air secondary batteries-Stability of NASICON-type glass ceramics in acid solutions. J Power Sources, 2010, 195: 6187–6191CrossRefGoogle Scholar
  24. 24.
    Debart A, Bao J L, Armstrong G, et al. An O2 cathode for rechargeable lithium batteries: The effect of a catalyst. J Power Sources, 2007, 174: 1177–1182CrossRefGoogle Scholar
  25. 25.
    Cheng H, Scott K. Carbon-supported manganese oxide nanocatalysts for rechargeable lithium-air batteries. J Power Sources, 2010, 195: 1370–1374CrossRefGoogle Scholar
  26. 26.
    Wang Y G, Cheng L, Li F, et al. High electrocatalytic activity of oxygen reduction on an air electrode based on Mn3O4/mesoporous carbon. Chem Mater, 2007, 19: 2095–2101CrossRefGoogle Scholar
  27. 27.
    Dbart A, Paterson A J, Bao J L, et al. MnO2 nanowires: A catalyst for the O2 electrode in rechargeable lithium batteries. Angew Chem Int Ed, 2008, 47: 4521–4524CrossRefGoogle Scholar
  28. 28.
    Lu Y C, Gasteiger H A, Parent M C, et al. The influence of catalysts on discharge and charge voltages of rechargeable Li-oxygen batteries. Electrochem Solid-State Lett, 2010, 13: A69–A72CrossRefGoogle Scholar
  29. 29.
    Lu Y C, Xu Z C, Gasteiger H A, et al. Platinum-gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. J Am Chem Soc, 2010, 132: 12170–12172CrossRefGoogle Scholar
  30. 30.
    Trahey L, Johnson C S, Vaughey J T, et al. Activated lithium-metal-oxides as catalytic electrodes for Li-O2 cells. Electrochem Solid-State Lett, 2011, 14: A64–A66CrossRefGoogle Scholar
  31. 31.
    Jasinski R. A new fuel cell cathode catalyst. Nature, 1964, 201: 1212–1213CrossRefGoogle Scholar
  32. 32.
    Goubert-Renaudin S N S, Zhu X, Wieckowski A. Synthesis and characterization of carbon supported transition metal oxide nanoparticles-Cobalt porphyrin as catalysts for electroreduction of oxygen in acids. Electrochem Commun, 2010, 12: 1457–1461CrossRefGoogle Scholar
  33. 33.
    Zhang H J, Yuan X X, Wen W, et al. Electrochemical performance of a novel CoTETA/C catalyst for the oxygen reduction reaction. Electrochem Commun, 2009, 11: 206–208CrossRefGoogle Scholar
  34. 34.
    Suresh P, Shukla A K, Munichandraiah N J. Temperature dependence of ac impedance in lithium-ion cells. Appl Electrochem, 2002, 32: 267–271CrossRefGoogle Scholar
  35. 35.
    Nobili F, Croce F, Scrosati B, et al. Electronic and electrochemical properties of LixNi1−yCoyO2 cathodes studied by impedance spectroscopy. Chem Mater, 2001, 13: 1642–1646CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Institute of Electrochemical and Energy Technology, Department of Chemical EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations