Skip to main content
Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Chinese Science Bulletin
  3. Article

Neutrino mass hierarchy and lepton flavor mixing

  • Review
  • Particle Physics
  • Open access
  • Published: 06 August 2011
  • Volume 56, pages 2594–2599, (2011)
  • Cite this article
Download PDF

You have full access to this open access article

Chinese Science Bulletin
Neutrino mass hierarchy and lepton flavor mixing
Download PDF
  • Zhi-zhong Xing1 
  • 787 Accesses

  • 4 Citations

  • Explore all metrics

Abstract

In the standard model of particle physics there are three species of neutrinos whose masses were originally assumed to be zero. But the discovery of solar and atmospheric neutrino oscillations indicates that neutrinos are massive and lepton flavors are mixed. In this brief review we first give an overview of our current knowledge about the neutrino mass spectrum and lepton flavor mixing angles, and then comment on the seesaw mechanisms which allow us to understand the origin of tiny neutrino masses. We pay particular attention to the nearly tri-bi-maximal neutrino mixing pattern and the Friedberg-Lee symmetry to derive it. A relatively promising possibility of detecting hot and warm neutrino dark matter in the Universe will also be discussed.

Article PDF

Download to read the full article text

Similar content being viewed by others

Flavored leptogenesis and neutrino mass with A4 symmetry

Article Open access 09 December 2021

Neutrino Phenomenology Within Inverse and Type II Seesaw Based on $$S_{4}$$ Flavor Symmetry

Chapter © 2018

A neutrino mass-mixing sum rule from SO(10) and neutrinoless double beta decay

Article Open access 03 April 2017

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Elementary Particles, Quantum Field Theory
  • Nuclear and Particle Physics
  • Nuclear Physics
  • Particle Physics
  • Russian and Post-Soviet Politics
  • Warm and dense matter
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Nakamura K, Particle Data Group. The review of particle physics. J Phys G, 2010, 37: 075021

    Article  Google Scholar 

  2. Xing Z Z. Nearly tri-bi-maximal neutrino mixing and CP violation. Phys Lett B, 2002, 533: 85–93

    Article  Google Scholar 

  3. Schwetz T, Tortola M, Valle J W F. Global neutrino data and recent reactor fluxes: status of three-flavor oscillation parameters. arXiv: 1103.0734

  4. Xing Z Z, Zhang H, Zhou S. Updated values of running quark and lepton masses. Phys Rev D, 2008, 77: 113016

    Article  Google Scholar 

  5. Li Y F, Xing Z Z. Possible capture of keV sterile neutrino dark matter on radioactive β-decaying nuclei. Phys Lett B, 2011, 695: 205–210

    Article  Google Scholar 

  6. Fritzsch H, Xing Z Z. Mass and flavor mixing schemes of quarks and leptons. Prog Part Nucl Phys, 2000, 45: 1–81

    Article  Google Scholar 

  7. Xing Z Z. Naturalness and testability of TeV seesaw mechanisms. Prog Theor Phys Suppl, 2009, 180: 112–127

    Article  Google Scholar 

  8. Minkowski P. µ→eγ at a rate of one out of one billion muon decays? Phys Lett B, 1977, 67: 421–428

    Article  Google Scholar 

  9. Mohapatra R N, Senjanovic G. Neutrino mass and spontaneous parity violation. Phys Rev Lett, 1980, 44: 912–915

    Article  Google Scholar 

  10. Konetschny W, Kummer W. Nonconservation of total lepton number with scalar bosons. Phys Lett B, 1977, 70: 433–435

    Article  Google Scholar 

  11. Magg M, Wetterich C. Neutrino mass problem and gauge hierarchy. Phys Lett B, 1980, 94: 61–64

    Article  Google Scholar 

  12. Schechter J, Valle J W F. Neutrino masses in SU(2)×U(1) theories. Phys Rev D, 1980, 22: 2227–2235

    Article  Google Scholar 

  13. Cheng T P, Li L F. Neutrino masses, mixings and oscillations in SU(2)×U(1) models of electroweak interactions. Phys Rev D, 1980, 22: 2860–2868

    Article  Google Scholar 

  14. Foot R, Lew H, He X G, et al. Seesaw neutrino masses induced by a triplet of leptons. Z Phys C, 1989, 44: 441–444

    Article  Google Scholar 

  15. Guo X, Daya Bay Collaboration. A precision measurement of the neutrino mixing angle θ 13 using reactor antineutrinos at Daya Bay. arXiv: hep-ex/0701029

  16. Fogli G L, Lisi E, Marrone A, et al. Hints of θ 13>0 from global neutrino data analysis. Phys Rev Lett, 2008, 101: 141801

    Article  Google Scholar 

  17. Gonzalez-Garcia M C, Maltoni M, Salvado J. Updated global fit to three neutrino mixing: Status of the hints of θ 13>0. JHEP, 2010, 1004: 056

    Article  Google Scholar 

  18. Gando A, Gando Y, Ichimura K, et al. Constraints on θ 13 from a three-flavor oscillation analysis of reactor antineutrinos at KamLAND. Phys Rev D, 2011, 83: 052002

    Article  Google Scholar 

  19. Mezzetto M, Schwetz T. θ 13: Phenomenology, present status and prospect. J Phys G, 2010, 37: 103001

    Article  Google Scholar 

  20. Fritzsch H, Xing Z Z. Lepton mass hierarchy and neutrino oscillations. Phys Lett B, 1996, 372: 265–270

    Article  Google Scholar 

  21. Fritzsch H, Xing Z Z. Large leptonic flavor mixing and the mass spectrum of leptons. Phys Lett B, 1998, 440: 313–318

    Article  Google Scholar 

  22. Fritzsch H, Xing Z Z. Maximal neutrino mixing and maximal CP violation. Phys Rev D, 2000, 61: 073016

    Article  Google Scholar 

  23. Harrison P F, Perkins D H, Scott W G. Tri-bi-maximal mixing and the neutrino oscillation data. Phys Lett B, 2002, 530: 167–173

    Article  Google Scholar 

  24. Ishimor H, Kobayashi T, Ohki H, et al. Non-Abelian discrete symmetries in particle physics. Prog Theor Phys Suppl, 2010, 183: 1–163

    Article  Google Scholar 

  25. Merlo L. Phenomenology of discrete flavor symmetries. arXiv: 1004.2211

  26. Ma E, Rajasekaran G. Softly broken A(4) symmetry for nearly degenerate neutrino masses. Phys Rev D, 2001, 64: 113012

    Article  Google Scholar 

  27. Altarelli G, Feruglio F. Tri-bi-maximal neutrino mixing from discrete symmetry in extra dimensions. Nucl Phys B, 2005, 720: 64–88

    Article  Google Scholar 

  28. Babu K S, He X G. Model of geometric neutrino mixing. arXiv: hep-ph/0507217

  29. Friedberg R, Lee T D. A possible relation between the neutrino mass matrix and the neutrino mapping matrix. High Energy Phys Nucl Phys, 2006, 30: 591–598

    Google Scholar 

  30. Friedberg R, Lee T D. Hidden symmetry of the CKM and neutrino mapping matrices. Annals Phys, 2008, 323: 1087–1105

    Article  Google Scholar 

  31. Xing Z Z, Zhang H, Zhou S. Nearly tri-bi-maximal neutrino mixing and CP violation from μ-τ symmetry breaking. Phys Lett B, 2006, 641: 189–197

    Article  Google Scholar 

  32. Luo S, Xing Z Z. Friedberg-Lee symmetry breaking and its predictions for θ 13. Phys Lett B, 2007, 646: 242–247

    Article  Google Scholar 

  33. Jarlskog C. Neutrino sector with Majorana mass terms and Friedberg-Lee symmetry. Phys Rev D, 2008, 77: 073002

    Article  Google Scholar 

  34. Chan A H, Low H B, Xing Z Z. Friedberg-Lee symmetry and tri-bi-maximal neutrino mixing in the inverse seesaw mechanism. Phys Rev D, 2009, 80: 073006

    Article  Google Scholar 

  35. Araki T, Geng C Q, Xing Z Z. Finite quantum corrections to the tri-bi-maximal neutrino mixing. arXiv: 1012.2970

  36. Mei J W, Xing Z Z. Radiative generation of θ 13 with the seesaw threshold effect. Phys Rev D, 2004, 70: 053002

    Article  Google Scholar 

  37. Luo S, Xing Z Z. Generalized tri-bi-maximal neutrino mixing and its sensitivity to radiative corrections. Phys Lett B, 2006, 632: 341–348

    Article  Google Scholar 

  38. Xing Z Z. A shift from democratic to tri-bi-maximal neutrino mixing with relatively large θ 13. Phys Lett B, 2011, 696: 232–236

    Article  Google Scholar 

  39. Casas J A, Espinosa J R, Ibarra A, et al. General RG equations for physical neutrino parameters and their phenomenological implications. Nucl Phys B, 2000, 573: 652–684

    Article  Google Scholar 

  40. Antusch S, Kersten J, Lindner M, et al. Running neutrino masses, mixings and CP phases: Analytical results and phenomenological consequences. Nucl Phys B, 2003, 674: 401–433

    Article  Google Scholar 

  41. Luo S, Mei J W, Xing Z Z. Radiative generation of leptonic CP violation. Phys Rev D, 2005, 72: 053014

    Article  Google Scholar 

  42. Xing Z Z. A novel parametrization of tau-lepton dominance and simplified one-loop renormalization-group equations of neutrino mixing angles and CP-violating phases. Phys Lett B, 2006, 633: 550–556

    Article  Google Scholar 

  43. Kusenko A. Sterile neutrinos: The dark side of the light fermions. Phys Rept, 2009, 481: 1–28

    Article  Google Scholar 

  44. Boyarsky A, Ruchayskiy O, Shaposhnikov M. The role of sterile neutrinos in cosmology and astrophysics. Ann Rev Nucl Part Sci, 2009, 59: 191–214

    Article  Google Scholar 

  45. Loewenstein K, Kusenko A. Dark matter search using Chandra observations of Willman 1, and a spectral feature consistent with a decay line of a 5 keV sterile neutrino. Astrophys J, 2010, 714: 652–662

    Article  Google Scholar 

  46. Prokhorov D A, Silk J. Can the excess in the FeXXVI Ly gamma line from the Galactic Center provide evidence for 17 keV sterile neutrinos? arXiv: 1001.0215

  47. Chan M H, Chu M C. Observational evidences for the existences of 17.4 keV decaying degenerate sterile neutrinos near the Galactic Center. arXiv: 1009.5872

  48. Ringwald A. Prospects for the direct detection of the cosmic neutrino background. Nucl Phys A, 2009, 827: 501c–506c

    Article  Google Scholar 

  49. Weinberg S. Universal neutrino degeneracy. Phys Rev D, 1962, 128: 1457–1473

    Article  Google Scholar 

  50. Irvine J M, Humphreys R. Neutrino masses and the cosmic neutrino background. J Phys G, 1983, 9: 847–852

    Article  Google Scholar 

  51. Cocco A G, Mangano G, Messina M. Probing low energy neutrino backgrounds with neutrino capture on beta decaying nuclei. JCAP, 2007, 0706: 015

    Article  Google Scholar 

  52. Lazauskas R, Vogel P, Volpe C. Charged current cross section for massive cosmological neutrinos impinging on radioactive nuclei. J Phys G, 2008, 35: 025001

    Article  Google Scholar 

  53. Li Y F, Xing Z Z, Luo S. Direct detection of the cosmic neutrino background including light sterile neutrinos. Phys Lett B, 2010, 692: 261–267

    Article  Google Scholar 

  54. Blennow M. Prospects for cosmic neutrino detection in tritium experiments in the case of hierarchical neutrino masses. Phys Rev D, 2008, 77: 113014

    Article  Google Scholar 

  55. Hamann J, Hannestad S, Raffelt G G, et al. Cosmology favoring extra radiation and sub-eV mass sterile neutrinos as an option. Phys Rev Lett, 2010, 105: 181301

    Article  Google Scholar 

  56. Giusarma E, Corsi M, Archidiacono M, et al. Constraints on massive sterile neutrino species from current and future cosmological data. arXiv: 1102.4774

  57. Cocco A G, Mangano G, Messina M. Low energy antineutrino detection using neutrino capture on EC decaying nuclei. Phys Rev D, 2009, 79: 053009

    Article  Google Scholar 

  58. Lusignoli M, Vignati M. Relic antineutrino capture on 163-Ho decaying nuclei. Phys Lett B, 2011, 697: 11–14

    Article  Google Scholar 

  59. Li Y F, Xing Z Z. A possible detection of the cosmic antineutrino background in the presence of flavor effects. Phys Lett B, 2011, 698: 430–437

    Article  Google Scholar 

  60. Li Y F, Xing Z Z. Captures of hot and warm sterile antineutrino dark matter on EC-decaying 163-Ho nuclei. arXiv: 1104.4000

  61. Liao W. keV scale right-handed neutrino dark matter and its detection in beta decay experiment. Phys Rev D, 2010, 82: 073001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China

    Zhi-zhong Xing

Authors
  1. Zhi-zhong Xing
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Zhi-zhong Xing.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Xing, Zz. Neutrino mass hierarchy and lepton flavor mixing. Chin. Sci. Bull. 56, 2594–2599 (2011). https://doi.org/10.1007/s11434-011-4612-y

Download citation

  • Received: 29 April 2011

  • Accepted: 18 May 2011

  • Published: 06 August 2011

  • Issue Date: August 2011

  • DOI: https://doi.org/10.1007/s11434-011-4612-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keyword

  • neutrino mass
  • lepton flavor mixing
  • cosmic neutrino background
  • dark matter
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

152.53.39.118

Not affiliated

Springer Nature

© 2025 Springer Nature