A palynological and palaeoclimatological record from the southern Philippines since the Last Glacial Maximum


A palynological analysis of a marine sediment core in the southern Philippines, provides a detailed regional vegetation and climate history for the West Pacific Warm Pool (WPWP) since the Last Glacial Maximum (LGM). Chronology was determined by a detailed oxygen isotope record. A higher representation of pollen from tropical upper montane rainforest during the LGM indicate that this forest type moved down along elevation, probabaly due to the lowered temperature. During the last deglaciation and the early Holocene, mangroves were more expanded and tropical mid and upper montane rainforests were restricted, suggesting a rising sea-level and temperature increase. Herbaceous pollen and pteridophyte spore records indicate a much drier condition during the LGM than the Holocene. Mangrove development is controlled by conditions at the river mouth influenced by river discharge. Pteridophyte spores are abundant in wet conditions and are mainly transported by rivers. During the mid-Holocene, the reduction in mangrove pollen and pteridophyte spore appears to be a result of climate change: mainly decrease in river discharge. This may have been affected by the decreasing intensity of the Southeast Asian Monsoon, and the increasing frequency and intensity of warm ENSO events, El Niño, in this region.


  1. 1

    Bush M B, Flenley J R. Tropical Rainforest Responses to Climatic Change. Chichester: Praxis Publishing Ltd, 2007

    Google Scholar 

  2. 2

    Hope G. Environmental change in the Late Pleistocene and later Holocene at Wanda site, Soroako, South Sulawesi, Indonesia. Palaeogeogr Palaeoclimatol Palaeoecol, 2001, 171: 129–145

    Article  Google Scholar 

  3. 3

    Peterson J A, Hope G S, Prentice M, et al. Mountain environments in New Guinea and the late Glacial Maximum warm seas/cold mountains enigma in the West Pacific Warm Pool region. In: Kershaw A P, Tapper N J, David B, et al., eds. Bridging Wallace’s Line. Adv Geo-Ecol, Catena Verlag, Reiskirchen, 2002, 34: 173–187

    Google Scholar 

  4. 4

    Penny D. A 40000 year palynological record from north-east Thailand; implications for biogeography and palaeo-environmental reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol, 2001, 171: 97–128

    Article  Google Scholar 

  5. 5

    Anhuf D, Ledru M P, Behling H, et al. Paleo-environmental change in Amazonian and African rainforest during the LGM. Palaeogeogr Palaeoclimatol Palaeoecol, 2006, 239: 510–527

    Article  Google Scholar 

  6. 6

    Maxwell A L, Liu K-B. Late Quaternary pollen and associated records from the monsoonal areas of continental South and SE Asia. In: Kershaw A P, Tapper N J, David B, et al., eds. Bridging Wallace’s Line. Adv GeoEcol, Catena Verlag, Reiskirchen, 2002, 34: 189–228

    Google Scholar 

  7. 7

    Newsome J C, Flenley J R. Late Quaternary vegetational history of the Central Highlands of Sumatra. II. Palaeopalynology and vegetational history. J Biogeogr, 1988, 15: 555–578

    Article  Google Scholar 

  8. 8

    van der Kaars S, Penny D, Tibby J, et al. Late Quaternary palaeoecology, palynology and palaeolimnology of a tropical lowland swamp: Rawa Danau, West Java, Indonesia. Palaeogeogr Palaeoclimatol Palaeoecol, 2001, 171: 185–212

    Article  Google Scholar 

  9. 9

    Li X, Sun X. Palynological records since Last Glacial Maximum from a deep sea core in southern South China Sea (in Chinese). Quat Sci, 1999, 6: 526–535

    Google Scholar 

  10. 10

    Wang X M, Sun X J, Wang P X, et al. A high-resolution history of vegetation and climate history on Sunda Shelf since the last glacial. Sci China Ser D-Earth Sci, 2007, 50: 75–80

    Article  Google Scholar 

  11. 11

    Scott L, Poulsen C, Lund S, et al. Super ENSO and global climate oscillations at millennial time scales. Science, 2002, 297: 222–226

    Article  Google Scholar 

  12. 12

    Dai A, Wigley T. Global patterns of ENSO-induced precipitation. Geophys Res Lett, 2000, 27: 1283–1286

    Article  Google Scholar 

  13. 13

    Whitmore T C. Tropical Rain Forests of the Far East. Oxford: Clarendon Press, 1975. 121–163

    Google Scholar 

  14. 14

    Stott L. Comment on “Anomalous radiocarbon ages for foraminifera shells”. Paleoceanography, 2007, 22: PAPA1211, doi: 10.1029/2006PA 001379

    Article  Google Scholar 

  15. 15

    Sun X, Li X. A pollen record of the last 37 ka in deep sea core 17940 from the northern slope of the South China Sea. Mar Geol, 1999, 156: 227–244

    Article  Google Scholar 

  16. 16

    Sun X, Li X, Luo Y, et al. The vegetation and climate at the last glaciation on the emerged continental shelf of the South China Sea. Palaeogeogr Palaeoclimatol Palaeoecol, 2000, 160: 301–316

    Article  Google Scholar 

  17. 17

    Kershaw A P, van der Kaars S, Flenley J R. The Quaternary history of far eastern rainforests. In: Bush M B, Flenley J R, eds. Tropical Rainforest Responses to Climatic Change. Chichester: Praxis Publishing Ltd, 2007. 77–115

    Google Scholar 

  18. 18

    Hope G, Kershaw A P, van der Kaars S, et al. History of vegetation and habitat change in the Austral-Asian region. Quat Int, 2004, 118–119: 103–126

    Article  Google Scholar 

  19. 19

    Ellison J C. Long-term retrospection on mangrove development using sediment cores and pollen analysis: A review. Aquat Bot, 2008, 89: 93–104

    Article  Google Scholar 

  20. 20

    Ellison J C. Holocene palynology and sea-level change in two estuaries in Southern Irian Jaya. Palaeogeogr Palaeoclimatol Palaeoecol, 2005, 220: 291–309

    Article  Google Scholar 

  21. 21

    Grindrod J, Moss P, van der Kaars S. Late Quaternary mangrove pollen records from the continental shelf and ocean cores in the north Australian-Indonesian region. In: Kershaw A P, Tapper N J, David B, et al., eds. Bridging Wallace’s Line. Adv GeoEcol, Catena Verlag, Reiskirchen, 2002, 34: 119–146

    Google Scholar 

  22. 22

    van der Kaars S, Wang X, Kershaw A P, et al. Late Quaternary palaeoecological record from the Banda Sea, Indonesia: Patterns of vegetation, climate and biomass burning in Indonesia and northern Australia. Palaeogeogr Palaeoclimatol Palaeoecol, 2000, 155: 135–153

    Article  Google Scholar 

  23. 23

    Tanabe S, Hori K, Saito Y, et al. Song Hong (Red River) delta evolution related to millennium-scale Holocene sea-level changes. Quat Sci Rev, 2003, 22: 2345–2361

    Article  Google Scholar 

  24. 24

    Tanabe S, Saito Y, Vu Q L, et al. Holocene evolution of the Song Hong (Red River) delta system, northern Vietnam. Sediment Geol, 2006, 187: 29–61

    Article  Google Scholar 

  25. 25

    Yulianto E, Sukapti W S, Rahardjo A T, et al. Mangrove shoreline responses to Holocene environmental change, Makassar Strait, Indonesia. Rev Palaeobot Palynol, 2004, 131: 251–268

    Article  Google Scholar 

  26. 26

    Flenley J R. Problems of the Quaternary on mountains of the Sunda-Sahul Region. Quat Sci Rev, 1996, 15: 549–555

    Article  Google Scholar 

  27. 27

    Milly P C D, Dunne K A, Vecchia A. Global pattern of trends in streamflow and water availability in a changing climate. Nature, 2005, 438: 347–350

    Article  Google Scholar 

  28. 28

    Lough J M. Tropical river flow and rainfall reconstructions from coral luminescence: Great Barrier Reef, Australia. Paleoceanography, 2007, 22: PA2218, doi: 10.1029/2006PA001377

    Article  Google Scholar 

  29. 29

    Aerts J C J H, Renssen H, Ward P J, et al. Sensitivity of global river discharges under Holocene and future climate conditions. Geophys Res Lett, 2006, 33: L19401, doi:10.1029/2006GL027493

    Article  Google Scholar 

  30. 30

    van Campo E. Monsoon fluctuations in two 20000-yr. Oxygenisotope/pollen records off southwest India. Quat Res, 1986, 26: 376–388

    Article  Google Scholar 

  31. 31

    Wang P X. Global monsoon in a geological perspective. Chinese Sci Bull, 2009, 54: 1113–1136

    Article  Google Scholar 

  32. 32

    Wang Y, Cheng H, Edwards R L, et al. A High-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science, 2001, 294: 2345–2348

    Article  Google Scholar 

  33. 33

    Wang Y, Cheng H, Edwards R L, et al. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science, 2005, 308: 854–857

    Article  Google Scholar 

  34. 34

    Griffiths M L, Drysdale R N, Gagan M K, et al. Increasing Australian-Indonesian monsoon rainfall linked to early Holocene sea-level rise. Nature, 2009, 605: 637–639

    Google Scholar 

  35. 35

    Moy C S, Seltzer G O, Rodbell D T, et al. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature, 2002, 420: 162–165

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to YePing Bian.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Bian, Y., Jian, Z., Weng, C. et al. A palynological and palaeoclimatological record from the southern Philippines since the Last Glacial Maximum. Chin. Sci. Bull. 56, 2359–2365 (2011). https://doi.org/10.1007/s11434-011-4573-1

Download citation


  • Last Glacial Maximum
  • tropical rainforests
  • palynological analyses
  • sea-level change
  • river discharge