Chinese Science Bulletin

, Volume 56, Issue 22, pp 2359–2365 | Cite as

A palynological and palaeoclimatological record from the southern Philippines since the Last Glacial Maximum

  • YePing BianEmail author
  • ZhiMin Jian
  • ChengYu Weng
  • Wolfgang Kuhnt
  • Timothé Bolliet
  • Ann Holbourn
Open Access
Article Geology


A palynological analysis of a marine sediment core in the southern Philippines, provides a detailed regional vegetation and climate history for the West Pacific Warm Pool (WPWP) since the Last Glacial Maximum (LGM). Chronology was determined by a detailed oxygen isotope record. A higher representation of pollen from tropical upper montane rainforest during the LGM indicate that this forest type moved down along elevation, probabaly due to the lowered temperature. During the last deglaciation and the early Holocene, mangroves were more expanded and tropical mid and upper montane rainforests were restricted, suggesting a rising sea-level and temperature increase. Herbaceous pollen and pteridophyte spore records indicate a much drier condition during the LGM than the Holocene. Mangrove development is controlled by conditions at the river mouth influenced by river discharge. Pteridophyte spores are abundant in wet conditions and are mainly transported by rivers. During the mid-Holocene, the reduction in mangrove pollen and pteridophyte spore appears to be a result of climate change: mainly decrease in river discharge. This may have been affected by the decreasing intensity of the Southeast Asian Monsoon, and the increasing frequency and intensity of warm ENSO events, El Niño, in this region.


Last Glacial Maximum tropical rainforests palynological analyses sea-level change river discharge 


  1. 1.
    Bush M B, Flenley J R. Tropical Rainforest Responses to Climatic Change. Chichester: Praxis Publishing Ltd, 2007Google Scholar
  2. 2.
    Hope G. Environmental change in the Late Pleistocene and later Holocene at Wanda site, Soroako, South Sulawesi, Indonesia. Palaeogeogr Palaeoclimatol Palaeoecol, 2001, 171: 129–145CrossRefGoogle Scholar
  3. 3.
    Peterson J A, Hope G S, Prentice M, et al. Mountain environments in New Guinea and the late Glacial Maximum warm seas/cold mountains enigma in the West Pacific Warm Pool region. In: Kershaw A P, Tapper N J, David B, et al., eds. Bridging Wallace’s Line. Adv Geo-Ecol, Catena Verlag, Reiskirchen, 2002, 34: 173–187Google Scholar
  4. 4.
    Penny D. A 40000 year palynological record from north-east Thailand; implications for biogeography and palaeo-environmental reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol, 2001, 171: 97–128CrossRefGoogle Scholar
  5. 5.
    Anhuf D, Ledru M P, Behling H, et al. Paleo-environmental change in Amazonian and African rainforest during the LGM. Palaeogeogr Palaeoclimatol Palaeoecol, 2006, 239: 510–527CrossRefGoogle Scholar
  6. 6.
    Maxwell A L, Liu K-B. Late Quaternary pollen and associated records from the monsoonal areas of continental South and SE Asia. In: Kershaw A P, Tapper N J, David B, et al., eds. Bridging Wallace’s Line. Adv GeoEcol, Catena Verlag, Reiskirchen, 2002, 34: 189–228Google Scholar
  7. 7.
    Newsome J C, Flenley J R. Late Quaternary vegetational history of the Central Highlands of Sumatra. II. Palaeopalynology and vegetational history. J Biogeogr, 1988, 15: 555–578CrossRefGoogle Scholar
  8. 8.
    van der Kaars S, Penny D, Tibby J, et al. Late Quaternary palaeoecology, palynology and palaeolimnology of a tropical lowland swamp: Rawa Danau, West Java, Indonesia. Palaeogeogr Palaeoclimatol Palaeoecol, 2001, 171: 185–212CrossRefGoogle Scholar
  9. 9.
    Li X, Sun X. Palynological records since Last Glacial Maximum from a deep sea core in southern South China Sea (in Chinese). Quat Sci, 1999, 6: 526–535Google Scholar
  10. 10.
    Wang X M, Sun X J, Wang P X, et al. A high-resolution history of vegetation and climate history on Sunda Shelf since the last glacial. Sci China Ser D-Earth Sci, 2007, 50: 75–80CrossRefGoogle Scholar
  11. 11.
    Scott L, Poulsen C, Lund S, et al. Super ENSO and global climate oscillations at millennial time scales. Science, 2002, 297: 222–226CrossRefGoogle Scholar
  12. 12.
    Dai A, Wigley T. Global patterns of ENSO-induced precipitation. Geophys Res Lett, 2000, 27: 1283–1286CrossRefGoogle Scholar
  13. 13.
    Whitmore T C. Tropical Rain Forests of the Far East. Oxford: Clarendon Press, 1975. 121–163Google Scholar
  14. 14.
    Stott L. Comment on “Anomalous radiocarbon ages for foraminifera shells”. Paleoceanography, 2007, 22: PAPA1211, doi: 10.1029/2006PA 001379CrossRefGoogle Scholar
  15. 15.
    Sun X, Li X. A pollen record of the last 37 ka in deep sea core 17940 from the northern slope of the South China Sea. Mar Geol, 1999, 156: 227–244CrossRefGoogle Scholar
  16. 16.
    Sun X, Li X, Luo Y, et al. The vegetation and climate at the last glaciation on the emerged continental shelf of the South China Sea. Palaeogeogr Palaeoclimatol Palaeoecol, 2000, 160: 301–316CrossRefGoogle Scholar
  17. 17.
    Kershaw A P, van der Kaars S, Flenley J R. The Quaternary history of far eastern rainforests. In: Bush M B, Flenley J R, eds. Tropical Rainforest Responses to Climatic Change. Chichester: Praxis Publishing Ltd, 2007. 77–115CrossRefGoogle Scholar
  18. 18.
    Hope G, Kershaw A P, van der Kaars S, et al. History of vegetation and habitat change in the Austral-Asian region. Quat Int, 2004, 118–119: 103–126CrossRefGoogle Scholar
  19. 19.
    Ellison J C. Long-term retrospection on mangrove development using sediment cores and pollen analysis: A review. Aquat Bot, 2008, 89: 93–104CrossRefGoogle Scholar
  20. 20.
    Ellison J C. Holocene palynology and sea-level change in two estuaries in Southern Irian Jaya. Palaeogeogr Palaeoclimatol Palaeoecol, 2005, 220: 291–309CrossRefGoogle Scholar
  21. 21.
    Grindrod J, Moss P, van der Kaars S. Late Quaternary mangrove pollen records from the continental shelf and ocean cores in the north Australian-Indonesian region. In: Kershaw A P, Tapper N J, David B, et al., eds. Bridging Wallace’s Line. Adv GeoEcol, Catena Verlag, Reiskirchen, 2002, 34: 119–146Google Scholar
  22. 22.
    van der Kaars S, Wang X, Kershaw A P, et al. Late Quaternary palaeoecological record from the Banda Sea, Indonesia: Patterns of vegetation, climate and biomass burning in Indonesia and northern Australia. Palaeogeogr Palaeoclimatol Palaeoecol, 2000, 155: 135–153CrossRefGoogle Scholar
  23. 23.
    Tanabe S, Hori K, Saito Y, et al. Song Hong (Red River) delta evolution related to millennium-scale Holocene sea-level changes. Quat Sci Rev, 2003, 22: 2345–2361CrossRefGoogle Scholar
  24. 24.
    Tanabe S, Saito Y, Vu Q L, et al. Holocene evolution of the Song Hong (Red River) delta system, northern Vietnam. Sediment Geol, 2006, 187: 29–61CrossRefGoogle Scholar
  25. 25.
    Yulianto E, Sukapti W S, Rahardjo A T, et al. Mangrove shoreline responses to Holocene environmental change, Makassar Strait, Indonesia. Rev Palaeobot Palynol, 2004, 131: 251–268CrossRefGoogle Scholar
  26. 26.
    Flenley J R. Problems of the Quaternary on mountains of the Sunda-Sahul Region. Quat Sci Rev, 1996, 15: 549–555CrossRefGoogle Scholar
  27. 27.
    Milly P C D, Dunne K A, Vecchia A. Global pattern of trends in streamflow and water availability in a changing climate. Nature, 2005, 438: 347–350CrossRefGoogle Scholar
  28. 28.
    Lough J M. Tropical river flow and rainfall reconstructions from coral luminescence: Great Barrier Reef, Australia. Paleoceanography, 2007, 22: PA2218, doi: 10.1029/2006PA001377CrossRefGoogle Scholar
  29. 29.
    Aerts J C J H, Renssen H, Ward P J, et al. Sensitivity of global river discharges under Holocene and future climate conditions. Geophys Res Lett, 2006, 33: L19401, doi:10.1029/2006GL027493CrossRefGoogle Scholar
  30. 30.
    van Campo E. Monsoon fluctuations in two 20000-yr. Oxygenisotope/pollen records off southwest India. Quat Res, 1986, 26: 376–388CrossRefGoogle Scholar
  31. 31.
    Wang P X. Global monsoon in a geological perspective. Chinese Sci Bull, 2009, 54: 1113–1136CrossRefGoogle Scholar
  32. 32.
    Wang Y, Cheng H, Edwards R L, et al. A High-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science, 2001, 294: 2345–2348CrossRefGoogle Scholar
  33. 33.
    Wang Y, Cheng H, Edwards R L, et al. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science, 2005, 308: 854–857CrossRefGoogle Scholar
  34. 34.
    Griffiths M L, Drysdale R N, Gagan M K, et al. Increasing Australian-Indonesian monsoon rainfall linked to early Holocene sea-level rise. Nature, 2009, 605: 637–639Google Scholar
  35. 35.
    Moy C S, Seltzer G O, Rodbell D T, et al. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature, 2002, 420: 162–165CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • YePing Bian
    • 1
    Email author
  • ZhiMin Jian
    • 1
  • ChengYu Weng
    • 1
  • Wolfgang Kuhnt
    • 2
  • Timothé Bolliet
    • 2
  • Ann Holbourn
    • 2
  1. 1.State Key Laboratory of Marine GeologyTongji UniversityShanghaiChina
  2. 2.Institute of GeosciencesUniversity of KielKielGermany

Personalised recommendations