Chinese Science Bulletin

, 56:1770 | Cite as

Interactions between marine microorganisms and their phages

Open Access
Review Oceanology


Viruses are the most abundant biological entities in marine ecosystems. Most of them are phages that infect bacteria and archaea. Phages play important roles in causing the mortality of prokaryotic cells, structuring microbial communities, mediating horizontal gene transfer between different microbes, influencing the microbial food web process, and promoting biogeochemical cycles (such as C, N, etc.) in the ocean. Here we provided an overview of recent advances in research on the interactions between marine microorganisms and their phages, and suggest future research directions based on our understanding of the literature and our own work.


marine phage phage infection horizontal gene transfer phage resistance 


  1. 1.
    Jiao N Z. Marine Microbial Ecology (in Chinese). Beijing: Science Press, 2006. 272–303Google Scholar
  2. 2.
    Duckworth D H. History and basic properties of bacterial viruses. In: Goyal S M, Gerba C P, Bitton G, eds. Phage Ecology. New York: John Wiley & Sons, 1987. 1–44Google Scholar
  3. 3.
    Fuhrman J A. Marine viruses and their biogeochemical and ecological effects. Nature, 1999, 399: 541–548CrossRefGoogle Scholar
  4. 4.
    Suttle C A. Marine viruses—Major players in the global ecosystem. Nat Rev Microbiol, 2007, 5: 801–812CrossRefGoogle Scholar
  5. 5.
    Suttle C A. Viruses in the sea. Nature, 2005, 437: 356–361CrossRefGoogle Scholar
  6. 6.
    Fuhrman J A, Suttle C A. Viruses in marine planktonic systems. Oceanography, 1993, 6: 51–63Google Scholar
  7. 7.
    Steward G F, Smith D C, Azam F. Abundance and production of bacteria and viruses in the Bering and Chukchi Seas. Mar Ecol-Prog Ser, 1996, 131: 287–300CrossRefGoogle Scholar
  8. 8.
    Weinbauer M G, Hofle M G. Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake. Appl Environ Microbiol, 1998, 64: 431–438Google Scholar
  9. 9.
    Suttle C A. The significance of viruses to mortality in aquatic microbial communities. Microb Ecol, 1994, 28: 237–243CrossRefGoogle Scholar
  10. 10.
    Weinbauer M G. Ecology of prokaryotic viruses. FEMS Microbiol Rev, 2004, 28: 127–181CrossRefGoogle Scholar
  11. 11.
    Danovaro R, Dell A, Corinaldesi C, et al. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature, 2008, 454: 1084–1087CrossRefGoogle Scholar
  12. 12.
    Wang F, Zheng T L, Hong H S. The important roles of marine virus in microbial food loop (in Chinese). Mar Sci, 1998, 4: 41–43Google Scholar
  13. 13.
    Wilhelm S W, Suttle C A. Viruses and Nutrient Cycles in the Sea. Bioscience, 1999, 49: 781–788CrossRefGoogle Scholar
  14. 14.
    Wommack K E, Colwell R R. Virioplankton: Viruses in aquatic ecosystems. Microbiol Mol Biol Rev, 2000, 64: 69–114CrossRefGoogle Scholar
  15. 15.
    Thingstad T F, Lignell R. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat Microb Ecol, 1997, 13: 19–27CrossRefGoogle Scholar
  16. 16.
    Zhang R, Weinbauer M G, Qian P Y. Viruses and flagellates sustain apparent richness and reduce biomass accumulation of bacterioplankton in coastal marine waters. Environ Microbiol, 2007, 9: 3008–3018CrossRefGoogle Scholar
  17. 17.
    Allison G E, Klaenhammer T R. Phage resistance mechanisms in lactic acid bacteria. Inter Dairy J, 1998, 8: 207–226CrossRefGoogle Scholar
  18. 18.
    Bohannan B J M, Kerr B, Jessup C M, et al. Trade-offs and coexistence in microbial microcosms. Antonie van Leeuwenhoek, 2002, 81: 107–115CrossRefGoogle Scholar
  19. 19.
    Middelboe M, Holmfeldt K, Riemann L, et al. Bacteriophages drive strain diversification in a marine Flavobacterium: Implications for phage resistance and physiological properties. Environ Microbiol, 2009, 11: 1971–1982CrossRefGoogle Scholar
  20. 20.
    Moebus K, Nattkemper H. Bacteriophage sensitivity patterns among bacteria isolated from marine waters. Helgoland Mar Res, 1981, 34: 375–385Google Scholar
  21. 21.
    Echols H. Developmental pathways for the temperate phage: Lysis vs lysogeny. Ann Rev Genet, 1976, 6: 157–190CrossRefGoogle Scholar
  22. 22.
    Hewson I, O’Neil J M, Fuhrman J A, et al. Virus-like particle distribution and abundance in sediments and overlying waters along eutrophication gradients in two subtropical estuaries. Limnol Oceanogr, 2001, 46: 1734–1746CrossRefGoogle Scholar
  23. 23.
    Lenski R E. Dynamics of interactions between bacteria and virulent bacteriophage. Adv Microb Ecol, 1988, 10: 1–44Google Scholar
  24. 24.
    Weinbauer M G, Suttle C A. Lysogeny and prophage induction in coastal and offshore bacterial communities. Aquat Microb Ecol, 1999, 18: 217–225CrossRefGoogle Scholar
  25. 25.
    Jiang S C, Paul J H. Occurrence of lysogenic bacteria in marine microbial communities as determined by prophage induction. Mar Ecol Prog Ser, 1996, 142: 27–38CrossRefGoogle Scholar
  26. 26.
    Jiang S C, Paul J H. Seasonal and diel abundance of viruses and occurrence of lysogeny/bacteriocinogeny in the marine environment. Mar Ecol Prog Ser, 1994, 104: 163–172CrossRefGoogle Scholar
  27. 27.
    Jiang S C, Paul J H. Significance of lysogeny in the marine environments: studies with isolates and a model of lysogenic phage production. Microb Ecol, 1998, 35: 235–243CrossRefGoogle Scholar
  28. 28.
    Wilhelm S W, Weinbauer M G, Suttle C A, et al. The role of sunlight in the removal and repair of viruses in the sea. Limnol Oceanogr, 1998, 43: 586–592CrossRefGoogle Scholar
  29. 29.
    Weinbauer M G, Brettar I, Höfle M. Lysogeny and virus-induced mortality of bacterioplankton in surface, deep, and anoxic waters. Limnol Oceanogr, 2003, 48: 1457–1465CrossRefGoogle Scholar
  30. 30.
    Ripp S, Miller R V. The role of pseudolysogeny in bacteriophagehost interactions in a natural freshwater environment. Microbiology, 1997, 143: 2065–2070CrossRefGoogle Scholar
  31. 31.
    Ripp S, Miller R. Dynamics of the pseudolysogenic response in slowly growing cells of Pseudomonas aeruginosa. Microbiology, 1998, 144: 2225–2232CrossRefGoogle Scholar
  32. 32.
    Moebus K. Marine bacteriophage reproduction under nutrient-limited growth of host bacteria. 2. Investigations with phage-host system [H3:H3/1]. Mar Ecol Prog Ser, 1996, 144: 13–22CrossRefGoogle Scholar
  33. 33.
    Abedon S T. Selection for bacteriophage latent period length by bacterial density: A theoretical examination. Microb Ecol, 1989, 18: 79–88CrossRefGoogle Scholar
  34. 34.
    Abedon S T, Herschler T D, Stopar D. Bacteriophage latent-period evolution as a response to resource availability. Appl Environ Microbiol, 2001, 67: 4233–4241CrossRefGoogle Scholar
  35. 35.
    Rohwer F, Prangishvili D, Lindell D. Roles of viruses in the environment. Environ Microbiol, 2009, 11: 2771–2774CrossRefGoogle Scholar
  36. 36.
    Davison J. Genetic exchange between bacteria in the environment. Plasmid, 1999, 42: 73–91CrossRefGoogle Scholar
  37. 37.
    Dutta C, Pan A. Horizontal gene transfer and bacterial diversity. J Bios, 2002, 27: 27–33CrossRefGoogle Scholar
  38. 38.
    Stotzky G. Gene transfer among bacteria in soil. In: Gene Transfer in the Environment. New York: McGraw-Hill, 1989. 165–222Google Scholar
  39. 39.
    Schicklmaier P, Schmieger H. Frequency of generalized transducing phages in natural isolates of the Salmonella typhimurium complex. Appl Environ Microbiol, 1995, 61: 1637–1640Google Scholar
  40. 40.
    Jiang S C, Paul J H. Gene transfer by transduction in the marine environment. Appl Environ Microbiol, 1998, 64: 2780–2787Google Scholar
  41. 41.
    Jain R, Rivera M C, Moore J E, et al. Horizontal Gene Transfer Accelerates Genome Innovation and Evolution. Mol Biol Evol, 2003, 20: 1598–1602CrossRefGoogle Scholar
  42. 42.
    Lawrence J G. Gene transfer, speciation, and the evolution of bacterial genomes. Curr Opin Microbiol, 1999, 2: 519–523CrossRefGoogle Scholar
  43. 43.
    Gogarten J P, Townsend J P. Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol, 2005, 3: 679–687CrossRefGoogle Scholar
  44. 44.
    Rohwer F, Thurber R V. Viruses manipulate the marine environment. Nature, 2009, 459: 207–212CrossRefGoogle Scholar
  45. 45.
    Lindell D, Jaffe J D, Coleman M L, et al. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature, 2007, 449: 83–86CrossRefGoogle Scholar
  46. 46.
    Lindell D, Sullivan M B, Johnson Z I, et al. Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc Nat Acad Sci USA, 2000, 101: 11013–11018CrossRefGoogle Scholar
  47. 47.
    Lindell D, Jaffe J D, Johnson Z I, et al. Photosynthesis genes in marine viruses yield proteins during host infection. Nature, 2005, 438: 86–89CrossRefGoogle Scholar
  48. 48.
    Nakayama K, Takashima K, Ishihara H, et al. The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol Microbiol, 2000, 38: 213–231CrossRefGoogle Scholar
  49. 49.
    Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315: 1709–1712CrossRefGoogle Scholar
  50. 50.
    Cui Y J, Li Y J, Yan Y F, et al. Clustered regularly interspaced short palindromic repeats: Structure, function and application (in Chinese). Acta Microbiol Sin, 2008, 48: 1549–1555Google Scholar
  51. 51.
    Chibani-Chennoufi S, Bruttin A, Dillmann M L, et al. Phage-host interaction: An ecological perspective. Bacteriol, 2004, 186: 3677–3686CrossRefGoogle Scholar
  52. 52.
    Huang C X, Zhang Y Y, Jiao N Z. Phage Resistance of a Marine Bacterium, Roseobacter denitrificans OCh114, as Revealed by Comparative Proteomics. Curr Microbiol, 2010, 61: 141–147CrossRefGoogle Scholar
  53. 53.
    Hill C. Bacteriophage and bacteriophage resistance in lactic acid bacteria. FEMS Microbiol Rev, 1993, 12: 87–108CrossRefGoogle Scholar
  54. 54.
    Forde A, Fitzgerald G F. Bacteriophage defence systems in lactic acid bacteria. Antonie van Leeuwenhoek, 1999, 76: 89–113CrossRefGoogle Scholar
  55. 55.
    Bolotin A, Quinquis B, Sorokin A, et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiol, 2005, 151: 2551–2561CrossRefGoogle Scholar
  56. 56.
    Mojica F J M, Díez-Villaseñor C, García-Martínez J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol, 2005, 60: 174–182CrossRefGoogle Scholar
  57. 57.
    Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiol, 2005, 151: 653–663CrossRefGoogle Scholar
  58. 58.
    Deveau H, Barrangou R, Garneau J E, et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol, 2008, 190: 1390–1400CrossRefGoogle Scholar
  59. 59.
    Zhang Y Y, Jiao N Z, Colquhoun D R, et al. Protein modifications related to phage resistance in a marine roseobacter. Aquat Microb Ecol, 2009, 55: 203–207CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
  2. 2.State Key Laboratory of Marine Environmental ScienceXiamen UniversityXiamenChina
  3. 3.Xiamen No. 1 High School of FujianXiamenChina

Personalised recommendations