Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Chinese Science Bulletin
  3. Article

Quantum key distribution using four-level particles

  • Article
  • Quantum Information
  • Open access
  • Published: 02 February 2011
  • Volume 56, pages 24–28, (2011)
  • Cite this article
Download PDF

You have full access to this open access article

Chinese Science Bulletin
Quantum key distribution using four-level particles
Download PDF
  • Tao Yan1,2 &
  • FengLi Yan1,2 
  • 647 Accesses

  • 18 Citations

  • Explore all metrics

Abstract

We present a quantum key distribution protocol based on four-level particle entanglement. Furthermore, a controlled quantum key distribution protocol is proposed using three four-level particles. We show that the two protocols are secure.

Article PDF

Download to read the full article text

Similar content being viewed by others

Practical Demonstration of Quantum Key Distribution Protocol with Error Correction Mechanism

Article 19 April 2023

A Quantum Key Distribution Protocol Based on the EPR Pairs and Its Simulation

Chapter © 2019

Multi-party Quantum Key Distribution Protocol Without Information Leakage

Article 31 May 2019

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Cryptology
  • Quantum Communications and Cryptography
  • Quantum Computing
  • Quantum Information
  • Qubits
  • Quantum Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Bennett C H, Brassard G. Quantum cryptography: Public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, System and Signal Processing. New York: IEEE, 1984. 175–179

    Google Scholar 

  2. Bennett C H. Quantum cryptography using any two non-orthogonal states. Phys Rev Lett, 1992, 68: 3121–3124

    Article  Google Scholar 

  3. Ekert A. Quantum cryptography based on Bells theorem. Phys Rev Lett, 1991, 67: 661–664

    Article  Google Scholar 

  4. Bennett C H, Brassard G, Mermin N D. Quantum cryptography without Bells theorem. Phys Rev Lett, 1992, 68: 557–559

    Article  Google Scholar 

  5. Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74: 145–195

    Article  Google Scholar 

  6. Long G L, Liu X S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys Rev A, 2002, 65: 032302

    Article  Google Scholar 

  7. Deng F G, Long G L. Controlled order rearrangement encryption for quantum key distribution. Phys Rev A, 2003, 68: 042315

    Article  Google Scholar 

  8. Deng F G, Long G L. Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys Rev A, 2004, 70: 012311

    Article  Google Scholar 

  9. Hwang W Y. Quantum key distribution with high loss: Toward global secure communication. Phys Rev Lett, 2003, 91: 057901

    Article  Google Scholar 

  10. Lo H K, Chau H F, Ardehali M. Efficient quantum key distribution scheme and a proof of its unconditional security. J Cryptology, 2005, 18: 133–165

    Article  Google Scholar 

  11. Wang X B. Quantum key distribution with two-qubit quantum codes. Phys Rev Lett, 2004, 92: 077902

    Article  Google Scholar 

  12. Wang X B. Quantum error-rejection code with spontaneous parametric down-conversion. Phys Rev A, 2004, 69: 022320

    Article  Google Scholar 

  13. Wang X B. Fault tolerant quantum key distribution protocol with collective random unitary noise. Phys Rev A, 2005, 72: 050304(R)

    Google Scholar 

  14. Deng F G, Li X H, Zhou H Y, et al. Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys Rev A, 2005, 72: 044302

    Article  Google Scholar 

  15. Li X H, Deng F G, Zhou H Y. Faithful qubit transmission against collective noise without ancillary qubits. Appl Phys Lett, 2007, 91: 144101

    Article  Google Scholar 

  16. Li X H, Deng F G, Zhou H Y. Efficient quantum key distribution over a collective noise channel. Phys Rev A, 2008, 78: 022321

    Article  Google Scholar 

  17. Xu F X, Chen W, Wang S, et al. Field experiment on a robust hierarchical metropolitan quantum cryptography network. Chinese Sci Bull, 2009, 54: 2991–2997

    Article  Google Scholar 

  18. Li C Z. Real applications of quantum communications in China. Chinese Sci Bull, 2009, 54: 2976–2977

    Article  Google Scholar 

  19. Zhang X L. One-way quantum identity authentication based on public key. Chinese Sci Bull, 2009, 54: 2018–2021

    Article  Google Scholar 

  20. Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete? Phys Rev, 1935, 47: 777–780

    Article  Google Scholar 

  21. Bell J S. On the Einstein-Podolsky-Rosen paradox. Physics, 1965, 1: 195–200

    Google Scholar 

  22. Hillery M, Buzek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829–1834

    Article  Google Scholar 

  23. Yan F L, Gao T. Quantum secret sharing between multiparty and multiparty without entanglement. Phys Rev A, 2005, 72: 012304

    Article  Google Scholar 

  24. Yan F L, Gao T, Li Y C. Quantum secret sharing between multiparty and multiparty with four states. Sci China Ser G-Phys Mech Astron, 2007, 50: 572–580

    Article  Google Scholar 

  25. Gao T, Yan F L, Li Y C. Quantum secret sharing between m-party and n-party with six states. Sci China Ser G-Phys Mech Astron, 2009, 52: 1191–1202

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. College of Physics Science and Information Engineering, Hebei Normal University, Shijiazhuang, 050016, China

    Tao Yan & FengLi Yan

  2. Hebei Advanced Thin Films Laboratory, Shijiazhuang, 050016, China

    Tao Yan & FengLi Yan

Authors
  1. Tao Yan
    View author publications

    Search author on:PubMed Google Scholar

  2. FengLi Yan
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to FengLi Yan.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Yan, T., Yan, F. Quantum key distribution using four-level particles. Chin. Sci. Bull. 56, 24–28 (2011). https://doi.org/10.1007/s11434-010-4208-y

Download citation

  • Received: 29 May 2010

  • Accepted: 13 August 2010

  • Published: 02 February 2011

  • Issue Date: January 2011

  • DOI: https://doi.org/10.1007/s11434-010-4208-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • quantum key distribution
  • four-level particles
  • entanglement
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

152.53.39.118

Not affiliated

Springer Nature

© 2025 Springer Nature