Advertisement

Chinese Science Bulletin

, Volume 55, Issue 35, pp 3998–4004 | Cite as

Spiral forces established by optical phase singularities

  • Xiang FangEmail author
  • ZhaoJun Ding
  • YanLi Feng
  • JianPeng Zhang
Article Optics
  • 31 Downloads

Abstract

The spiral forces of phase singularities are demonstrated experimentally and numerically by presenting the generation and propagation dynamics of multiple optical vortices embedded in a Gaussian beam. The results reveal that the energy flow established by certain phase singularity will perform the characteristics of force on other singularities whose direction is determined by the sign of the topological charge. The force is confirmed by the fluid-like motions of multi-vortex beams, i.e. singularities undergo rotation (annihilation) with each other when they involve identical (opposite) topological charges. This force mechanism may help develop an intuitive understanding of multi-vortex motion and presents a new viewpoint from which to study the dynamics of singularities.

Keywords

phase singularity optical vortex spiral force fluid-like motion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Harada K, Matsuda T, Bonevich J, et al. Real-time observation of vortex lattices in a superconductor by electron microscopy. Nature, 1992, 360: 51–53CrossRefGoogle Scholar
  2. 2.
    Urban M, Schuck P, Viñas X. Thomas-Fermi approximation to static vortex states in superfluid trapped atomic gases. Eur Phys J D, 2003, 27: 147–157CrossRefGoogle Scholar
  3. 3.
    Wang S Y, Jia L B, Yin X Z. Kinematics and forces of a flexible body in Karman vortex street. Chinese Sci Bull, 2009, 54: 556–561CrossRefGoogle Scholar
  4. 4.
    Nye J F, Berry M V. Dislocations in wave trains. Proc R Soc Lond A, 1974, 336: 165–190CrossRefGoogle Scholar
  5. 5.
    Masajada J. Half-plane diffraction in the case of Gaussian beams containing an optical vortex. Opt Commun, 2000, 175: 289–294CrossRefGoogle Scholar
  6. 6.
    Schwarz U T, Sogomonian S, Maier M. Propagation dynamics of phase dislocations embedded in a Bessel light beam. Opt Commun, 2002, 208: 255–262CrossRefGoogle Scholar
  7. 7.
    Dennis M R, Kivshar Y S, Soskin M S, et al. Singular optics: More ado about nothing. J Opt A: Pure Appl Opt, 2009, 11: 090201–090203CrossRefGoogle Scholar
  8. 8.
    He H, Friese M E J, Heckenberg N R, et al. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with phase singularity. Phys Rev Lett, 1995, 75: 826–829CrossRefGoogle Scholar
  9. 9.
    Liu Y D, Gao C Q, Gao M W, et al. Superposition and detection of two helical beams for optical orbit angular momentum communication. Opt Comm, 2008, 281: 3636–3639CrossRefGoogle Scholar
  10. 10.
    Belić M R, Vujić D, Stepken A, et al. Isotropic versus anisotropic modeling of photorefractive solitions. Phys Rev E, 2002, 65: 066610CrossRefGoogle Scholar
  11. 11.
    Vuong L T, Grow T D, Ishaaya A, et al. Collapse of optical vortices. Phys Rev Lett, 2006, 96: 133901CrossRefGoogle Scholar
  12. 12.
    Skryabin D V, Firth W J. Dynamics of self-trapped beams with phase dislocation in saturable Kerr and quadratic nonlinear media. Phys Rev E, 1998, 58: 3916–3930CrossRefGoogle Scholar
  13. 13.
    Chen Z G, Shih M, Segev M, et al. Steady-state vortex-screening solitons formed in biased photorefractive media. Opt Lett, 1997, 22: 1751–1753CrossRefGoogle Scholar
  14. 14.
    Singh R P, Chowdhury S R. Noncanonical vortex transformation and propagation in a two-dimensional optical system. J Opt Soc Am A, 2003, 20: 573–576CrossRefGoogle Scholar
  15. 15.
    Bekshaev A Y, Soskin M S, Vasnetsov M V. An optical vortex as a rotating body: Mechanical features of a singular light beam. J Opt A: Pure Appl Opt, 2004, 6: S170–S174CrossRefGoogle Scholar
  16. 16.
    Skarka V, Aleksić N B, Berezhiani V I. Dynamics of electromagnetic beam with phase dislocation in saturable nonlinear media. Phys Lett A, 2001, 291: 124–132CrossRefGoogle Scholar
  17. 17.
    Zhao Y X, Yi S H, He L, et al. The experimental study of interaction between shock wave and turbulence. Chinese Sci Bull, 2007, 52: 1297–1301CrossRefGoogle Scholar
  18. 18.
    Brown G L, Roshko A. On the density effects and large structures in turbulent mixing layers. J Fluid Mech, 1974, 64: 775–816CrossRefGoogle Scholar
  19. 19.
    Crouch J D. Instability and transient growth for two trailing-vortex pairs. J Fluid Mech, 1997, 350: 311–330CrossRefGoogle Scholar
  20. 20.
    Yan H, Lü B. Transformation of the optical vortex dipole by an astigmatic lens. J Opt A: Pure Appl Opt, 2009, 11: 065706CrossRefGoogle Scholar
  21. 21.
    Rozas D, Law C T, Swartzlander Jr G A. Propagation dynamics of optical vortices. J Opt Soc Am B, 1997, 14: 3054–3065CrossRefGoogle Scholar
  22. 22.
    Roux F S. Canonical vortex dipole dynamics. J Opt Soc Am B, 2004, 21: 655–663CrossRefGoogle Scholar
  23. 23.
    Chen M, Roux F S. Accelerating the annihilation of an optical vortex dipole in a Gaussian beam. J Opt Soc Am A, 2008, 25: 1279–1286CrossRefGoogle Scholar
  24. 24.
    Dong L W, Ye F W, Wang J D, et al. Interaction between optical vortices carrying opposite topological charges. Acta Phys Sin, 2004, 53: 3353–3357Google Scholar
  25. 25.
    Rozas D, Sacks Z S, Swartzlander Jr G A. Experimental observation of fluidlike motion of optical vortices. Phys Rev Lett, 1997, 79: 3399–3402CrossRefGoogle Scholar
  26. 26.
    Guo C S, Zhang Y, Han Y J, et al. Generation of optical vortices with arbitrary shape and array via helical phase spatial filtering. Opt Comm, 2006, 259: 449–454CrossRefGoogle Scholar
  27. 27.
    Ashkin A. Acceleration and trapping of particles by radiation pressure. Phys Rev Lett, 1970, 24: 156–159CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Xiang Fang
    • 1
    Email author
  • ZhaoJun Ding
    • 1
  • YanLi Feng
    • 1
  • JianPeng Zhang
    • 1
  1. 1.Department of Computer Science and TechnologyShandong Institute of Business and TechnologyYantaiChina

Personalised recommendations